
#60

Page 1
AN60 05/05/03

Hardware Implementation Guide for the PI7C8154
By Glenn Sanders

Introduction
The PCI interface was originally created for the personal
computing industry. These days it has been adopted by system
designers who incorporate it into Datacom, Telecom, PCs,
Servers, and many other systems. Currently the PCI interface is
used mainly as an expansion bus to add PCI slots on the system
motherboards that have wide ranging applications. It is also
used in add-in cards since most systems have PCI slots available
to insert the PCI add-in cards.

As bandwidth requirements increased, the PCI bus was extended
to support 64-bit transfers at up to 66MHz clock speed, giving
approximately 4 times greater bandwidth over the earlier 32-
bit/33MHz PCI bus implementations. Three factors complicated
this approach:
� Increasing clock speed decreased the number of available

loads per PCI bus (2 PCI connectors or 4 embedded devices
at 66MHz)

� The trace length of the bus is decreased
� A 66MHz PCI bus will drop to 33MHz speed when an

older style 33MHz add-in card is inserted.

A PCI-to-PCI bridge overcomes these limitations by adding a
new �secondary� bus, which is electrically and physically
distinct from the previous or �primary� PCI bus. Now this bus
can have loading, layout distances, and potentially differing bus
clock frequencies.

The PI7C8154 2-Port PCI-to-PCI Bridge is a 64-bit, 66MHz
chip that can be used either within a motherboard, Backplane, or
Add-In Card.

Example of 4-Port Ethernet Network Card

Schematic and Layout Guidelines
This section has guidelines for hardware implementation of the
PI7C8154 PCI-to-PCI Bridge into a motherboard or add-in card.

Power
The 8154 bridge supports both 3.3V and 5V signaling
environments. The chip core is powered by 3.3V VDD and
signaling on either bus is at the voltage level of the respective
P_VIO (pin R20) or S_VIO (pin N22) inputs.

Clock Frequency
Input clocks:
The input clock frequency comes through signal P_CLK. This
signal can be up to 66 MHz; the secondary bus clock will be
internally derived from this clock and output at 1x or 1/2x
primary input clock frequency according to:

Primary
bus clock

S_M66EN Secondary bus speed

66 MHz High 66 MHz
66 MHz Low 33 MHz
50 MHz High 50 MHz
50 MHz Low 25 MHz
33 MHz Low 33 MHz
33 MHz * [externally

pulled High by
5K-ohm or
greater resistor]

33 MHz;
 +
S_M66EN will be
driven low by the
bridge

*The last case is where an expansion card designed for 66 MHz
operation is placed into a 33 MHz slot or the normally 66 MHz
primary bus has some other add-in card with M66EN tied low
(thus forcing that bus to 33 MHz operation).
The input clock can be either 3.3V or 5V logic levels at 33
MHz; per PCI spec 66 MHz clocks should be 3.3 V.

Output Clocks:
Each secondary clock output is limited to one load. One
secondary clock output is used to feedback into S_CLKIN, with
the remaining 8 clocks driving embedded PCI devices/slots.

All secondary clock traces including feedback should have the
same length so as to deliver the clock at the same time at their
respective destinations. This means that the furthest secondary
bus device from the bridge governs the effective secondary bus
clock trace lengths. Unused clock outputs can be disabled by
writing to the bridge configuration register at offset 68h, or
terminated electrically.

#60

Page 2
AN60 05/05/03

Clock lines are best terminated with a series termination
resistor. The value to use depends on the impedance of your
transmission lines. For example, our 65-ohm trace impedance
reference board uses 22-ohm resistors placed close to the bridge.

Programming clock outputs
Unused clock outputs can be disabled by using a serial clock
mask shift to selectively disable secondary clock outputs.

The 8154 uses GPIO[0] and GPIO[2] pins and the MSK_IN
signal to input a 16-bit serial data stream. This data is shifted
into the secondary clock control register as soon as P_RESET_L
deasserts. S_RESET_L delays deassertion until the 8154
completes shifting in the clock mask data. GPIO[0] acts as the
shift register clock and GPIO[2] determines shift or load
operation during that shift register clock cycle. MSK_IN is the
1 bit serial data bus for this operation; thus tying it low will bus
all �0� values (enabling all clocks) and eliminate the need for
the external shift register circuit at several dollars savings.

Bit Description S_clk_o
1:0 Device 0 / slot 0 PRSNT#<1:2> 0
3:2 Device 1 / slot 1 PRSNT#<1:2> 1
5:4 Device 2 / slot 2 PRSNT#<1:2> 2
7:6 Device 3 / slot 3 PRSNT#<1:2> 3
8 Device 4 4
9 Device 5 5
10 Device 6 6
11 Device 7 7
12 Device 8 8
13 S_CLKIN (feedback clock input) 9
14 Reserved Ignored
15 Reserved Ignored

For the first 4 devices, the two bits corresponding to PRSNT#[2]
and PRSNT#[1] are ANDed, so that a low on either is counted
as a low for that device, low being an enable for that device�s
PCI clock.

Figure 2: Schematics section: Programmng secondary clocks

#60

Page 3
AN60 05/05/03

Miscellaneous Signal Connections
Unused INPUT signals should not be left floating.
Where �pull up� is used, use a 5-10K-ohm resistor to VCC/VDD.
For 8154 IC:
Pin name Pin Requested value

MSK_IN R21

NOT pulled internally; do not
float this signal. Tie low to
enable all secondary bus
clocks, or connect to the
circuit shown in figure 2.

CONFIG66 R22

Used to prevent the bridge
from 66MHz operation when
tied low; this pin should be
tied high to allow 66MHz
operation.

TCK N20 Pull up if JTAG port not used

TMS P21 Pulled Up internally so can be
NC

TDO P22 Output so can be no connect

TDI P23 Pulled Up internally so can be
NC

TRST_L N23 Pulled Up internally so can be
NC

GPIO[3:0] K2,K3,
L4,L1

Pull Up through 10K-ohm
resistor

P_M66EN AB10 Pull up through 10K-ohm
resistor if capable of 66MHz

S_M66EN A14

Pull up through 10K-ohm
resistor if capable of 66MHz;
else tie low for 33MHz only
secondary bus

S_CFN_L K1

Tie low for secondary bus
internal arbiter; pull high for
external arbiter. For more
details see page 4. Do not float

BPCCE R4
Tie low if not using power
management; pull up to enable
power management

PMEENA_L D11

Tie this signal low to indicate
some downstream devices are
capable of asserting PME#,
else tie high to disable power
management.

P_AD[63:32]

For add-in cards, the
motherboard is assumed to
have pull-up resistors here
already, in order to support
32-bit cards placed into 64-bit
slots. If this bridge is a
motherboard or backplane, the
primary PCI bus willl need to
have pullups in the 5-10K-
ohm range.**

P_CBE[7:4] Pulled high by motherboard**
P_PAR64 T21 Pulled high by motherboard**
P_REQ64_L AC14 Pulled high by motherboard**
P_ACK64_L AB14 Pulled high by motherboard**

S_SERR_L B11 Pull up
S_PERR_L C11 Pull up
S_LOCK_L A11 Pull up
S_STOP_L C10 Pull up
S_DEVSEL_L B10 Pull up
S_TRDY_L A10 Pull up

S_IRDY_L C9 Pull up

S_FRAME_L B9 Pull up

S_RESET_L H2 Pull up

S_AD[63:32] Pull high individually

S_CBE[7:4] Pull high individually

S_PAR64 N21 Pull up

S_ACK64_L C18 Pull up

S_REQ64_L B19 Pull up

For each PCI slot:
Pin name location Requested value

REQ# Pull high through external
resistor

SDONE (A40) Pull up
SBO# (A41) Pull up

PRSNT1# (B9) Pull up and decouple with a
0.01uF capacitor

PRSNT2# (B11) Pull up and decouple with a
0.01uF capacitor

Additional PCI signals per PCI specification 2.2, section 2.2.7:

PRSNT[1:2] Normally these are pulled high with a decoupling
capacitor to ground on the secondary bus.
PME# Power Management Event signal, an optional signal.
*PMEENA_L. When low, 5 bits [31:27] are set at offset DEh to
indicate the corresponding secondary bus devices support the
PME# pin. The bridge does not have a PME# input; but it does
have this as a method to notify device drivers that downstream
devices may support PME# assertion, and to scan them to
determine actual PME# pin support. The actual PCI connector
PME# signal is then bused from the secondary PCI bus, around
the bridge and out onto the primary PCI bus edge connector (for
an add-in card) or onto the primary PCI bus for a motherboard
implementation.

#60

Page 4
AN60 05/05/03

3.3Vaux: This power source, if implemented on your design,
should be bused from the primary PCI connector around the
bridge to the secondary bus connectors.

Power Decoupling
In order to reduce noise at Vdd or ground from impacting the
bridge, place 4 sets of decoupling capacitors top and bottom as
close as possible to each corner of the bridge IC. These should
be {0.1 uF, 0.01 uF, 0.001 uF} on bottom side and be {10 uF,
0.1 uF, 0.01 uF, 0.001 uF} top side. These are in addition to
further decoupling at the PCI primary interface and secondary
slots as needed per PCI spec 2.2 sec. 4.4.2.1 �power
decoupling�.

For add-in cards, please add the following decoupling capacitors
at the edge connector, for 3.3V and 5V pins, with values {0.1
uF, 0.01 uF, 0.001 uF}. Use high quality, low ESR surface
mounted ceramic capacitors.

PCI INTERRUPTS
PCI interrupts are processed at the motherboard south bridge,
which sits on the primary PCI bus (thus upstream from the
8154). Thus there aren�t signals at the bridge for interrupt
processing; rather during layout the board designer routes the
INTA#, INTB#, INTC#, and INTD# signals directly to the
corresponding signals on the primary bus.

When the secondary bus is to have PCI connectors, the pin
position of the PCI INTx# signals rotates from slot to slot., per
PCI 2.2 spec 2.2.6 (page 14).

Six layer board stacking recommendation
For 5V or mixed signaling environments, we recommend a 6
layer board arranged as follows:

Top route clock and other critical signals on top
Internal plane 1 Ground
Internal plane 2 3.3 V
Internal plane 3 5 V (with 12V islands)
Internal plane 4 Ground
Bottom signal connections

Do NOT route high frequency bus signals under the bridge.

Signal layers should be separated by ground planes, and no
signals routed between ground and power planes. Use FR-4
material for board fabrication.

General layout guidelines
1. Limit your trace lengths. Longer traces display more

resistance and induction and introduce more delays. It also
limits the bandwidth which varies inversely with the square
of trace length.

2. Use higher impedance traces. Raising the impedance will
also increase the bandwidth. Per PCI specification 2.2
section 4.4.3.3 trace impedance should be controlled to be
within 60 to 100 ohms range.

3. Do not use any clock signal loops. Keep clock lines straight
when possible.

4. For related clock signals that have skew specifications,
match the clock trace lengths.

5. Do not route signals in the ground and Vcc planes.
6. Do not route signals close to the edge of the PCB board.
7. Make sure there is a solid ground plane beneath the bridge

IC (PI7C8154).
8. The power plane should face the return ground plane. No

signals should be routed between power and ground.
9. Route clock signals on the top layer and avoid vias for these

signals. Vias change the impedance and introduce more
skew and reflections.

10. Do not use any connectors on clock traces.
11. Use wide traces for power and ground.
12. Keep high speed noise sources away from the PI7C8154.
13. Remember that per PCI spec 2.2 sec 4.4.3.1, the PI7C8154

should have a primary PCI edge connector to BGA pad
trace distance of not more than 1.5 inches (37.5 mm) for
signals coming from the primary PCI interface. Secondary
interface signals would then be limited as in PCI
motherboard layout rules.

Figure 3: Top Layer Overview

#60

Page 5
AN60 05/05/03

Figure 4: Top layer at bridge, showing vias and
pads at surface mount

Figure 5: Same view as Figure 4, Negative film

Figure 6: Bottom Layer

Figure 7: Bottom layer zoom near bridge

Figure 8: 5V layer with 12V islands / detail of 12V/-12V islands

#60

Page 6
AN60 05/05/03

External Arbiter
An arbiter needs to watch the PCI bus clock, each REQ#, and
the control signals RESET#, TRDY#, DEVSEL#, LOCK#,
STOP#, FRAME#, CBE[3:0] and IRDY#. The 8154 normally
uses an internal abiter for the secondary PCI bus. However
there exists a method to use an external arbiter:

In order to disable the internal arbiter, tie high (pin K1)
S_CFN_L.

Next the bridge needs to output a REQ# and wait for a GNT#
input just like any other bus master device. When the bridge is
in the internal arbiter mode, it waits to receive as inputs REQ#s
from bus master devices on the secondary bus and then issues as
an output a corresponding GNT#. Now that the bridge is yet
another device, it must output a REQ# to the external arbiter and
wait its turn to use the bus, which will be an input GNT# signal.
The signal named S_GNT_L[0] (pin E2) will become the bridge
REQ# on the secondary bus, since it is an output from the
bridge, in external arbiter mode. Signal name S_REQ_L[0]
(pin D4), as it is an input, will be the bridge GNT# on the
secondary bus when in external arbiter mode.

Finally, route the S_REQ_L[3:0] traces from the PCI slot
connectors/embedded devices to the external arbiter. Route the
S_GNT_L[3:0] devices likewise. At the 8154 bridge, the inputs
S_REQ_L[3:0] do not have any internal pullups, so the signals
S_REQ_L[3:0] need pull ups at the inputs to the bridge. As
GNT#s are normally output by the bridge, the S_GNT#[3:0] can
also be left as no connect in external arbiter mode.

References
1) Pericom Semiconductor App Note #22 �Solutions to

Current High-Speed Board Design�
2) PCI Local Bus specification 2.2 section 4.4 �Expansion

Board Specification� [decoupling through routing
recommendations and impedance sections] p150-152.

3) PCI Local Bus specification 2.2 section 4.2.6 Pinout
recommendation p131.

4) PCI Local Bus specification 2.2 section 4.3.3 Pull-ups
p136.

5) Compact PCI PICMG 2.0 R3.0. p17-20 �Electrical
Requirements�

6) Pericom semiconductor App Note #31 �Zero-Delay Clock
Buffer Layout and Schematic Guidelines� p1.

Reference board schematics and gerber files available on
request.

Figure 10. Example of connections to an external arbiter

