

Automotive 8-Bit Bi-Directional Level Shifter with Automatic Direction Sensing for Push-Pull and Open-Drain Applications

Description

The DIODES LXS0108Q is an automotive, 8-bit, dual-supply, automatic direction sensing level translator. The A and B ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. This allows bi-directional translation between lower and higher logic signals. Each channel can be mixed and matched with different output types (open-drain or push-pull) and mixed data flows (transmit or receive) without intervention from the host.

When the OE pin is low, all I/Os are configurated to be in a high-impedance state. To ensure the Hi-Z state during power-up or power-down periods, tie OE to GND through a pull-down resistor. The minimum value of the resistor is determined by the current-sourcing capability of the driver.

The LXS0108Q is available in TSSOP-20 package with temperature range specified from -40°C to +125°C.

Block Diagram

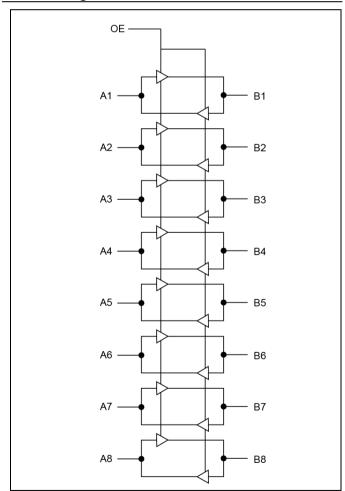


Figure 1. Block Diagram

Features

- AEC-Q100 Grade 1
- Specified From -40°C to +125°C
- 3.3V and 5.0V Translations
 - 110Mbps (Push-Pull)
 - 0.8Mbps (Open-Drain)
- 1.8V and 2.5V, 3.3V, 5.0V Translations
 - 50Mbps (Push-Pull)
 - 0.8Mbps (Open-Drain)
- 1.2V and 1.8V, 2.5V, 3.3V, 5.0V Translations
 - 20Mbps (Push-Pull)
 - 0.6Mbps (Open-Drain)
- V_{CCA}: 1.2V to 3.6V
- V_{CCB}: 1.65V to 5.5V
- V_{CCA} Must Be Less Than or Equal to V_{CCB}
- No Direction-Control Signal Required
- Bit-to-Bit Skew as Low as 1.0ns
- ESD Protection Per ANSI/ESDA/JEDEC JS-001
 - A Port: HBM ±5000V
 - B Port: HBM ±8000V
- IEC 61000-4-2 ESD (B Port)
 - ±8000V Contact Discharge
- Integrated Pull-Up Resistors
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- The LXS0108Q is suitable for automotive applications requiring specific change control; the part is AEC-Q100 qualified, PPAP capable, and manufactured in IATF 16949certified facilities.

https://www.diodes.com/quality/product-definitions/

- Packaging (Pb-free & Green):
 - 20-pin, TSSOP (L)

Application(s)

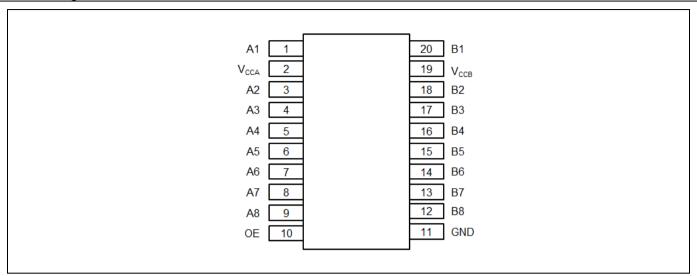
- GPIO, SPI, SDIO, UART
- I2C or 1-Wire Voltage-Level Translation
- Infotainments and Digital Clusters
- Automotive ADAS
- Automotive Telematics

Notes:

antimony compounds

Notes.

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.


2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

Pin Configuration

Pin Description

Pin#	Pin Name	Type	Description
2	V _{CCA}	Power	A-port supply voltage. $1.2V \le V_{CCA} \le 3.6V$
19	V _{CCB}	Power	B-port supply voltage. $1.65V \le V_{CCB} \le 5.5V$
1	A1	I/O	Input/output A. Referenced to V _{CCA} .
3	A2	I/O	Input/output A. Referenced to V _{CCA}
4	A3	I/O	Input/output A. Referenced to V _{CCA}
5	A4	I/O	Input/output A. Referenced to V _{CCA}
6	A5	I/O	Input/output A. Referenced to V _{CCA}
7	A6	I/O	Input/output A. Referenced to V _{CCA}
8	A7	I/O	Input/output A. Referenced to V _{CCA}
9	A8	I/O	Input/output A. Referenced to V _{CCA}
20	B1	I/O	Input/output B. Referenced to V _{CCB}
18	B2	I/O	Input/output B. Referenced to V _{CCB}
17	В3	I/O	Input/output B. Referenced to V _{CCB}
16	B4	I/O	Input/output B. Referenced to V _{CCB}
15	B5	I/O	Input/output B. Referenced to V _{CCB}
14	В6	I/O	Input/output B. Referenced to V _{CCB}
13	В7	I/O	Input/output B. Referenced to V _{CCB}
12	В8	I/O	Input/output B. Referenced to V _{CCB}
10	OE	Input	Outputs enable (active High). Pull OE low to place all outputs in 3-state mode. Referenced to VCCA.
11	GND	GND	Ground. The exposed center thermal pad must be either be connected to Ground or left electrically opened.

Maximum Ratings

Storage Temperature	65°C to +150°C
DC Supply Voltage Port B	
DC Supply Voltage Port A	V to +4.6V
Vi (A) Referenced DC Input Voltage	V to +4.6V
Vi (B) Referenced DC Input Voltage	V to +6.5V
Enable Control Pin DC Input Voltage	V to +4.6V
Continuous Output Current, I/O	30mA
Total Power Dissipation	500mW ⁽²⁾

Note

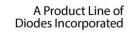
- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Total Power Dissipation derates linearly with 10.0mW/°C above 100°C.

Recommended Operation Conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{CCA}	V _{CCA} Positive DC Supply Voltage	1.2		3.6	V
V _{CCB}	V _{CCB} Positive DC Supply Voltage	1.65		5.5	V
V_{OE}	Enable Control Pin Voltage	GND		5.5	V
17	A-Port I/O Pin Voltage (A _X)	GND		V _{CCA}	V
V _{IO}	B-Port I/O Pin Voltage (B _X)	GND		V _{CCB}	V
Δt / Δν	A or B port Push-Pull Driving, (V _{CCA} = 1.4V to 3.6V, V _{CCB} = 1.65V to 5.5V)			10	ns/V
	OE ($V_{CCA} = 1.4V$ to 3.6V, $V_{CCB} = 1.65V$ to 3.6V)			10	ns/V
TA	Operating Temperature Range	-40		+125	°C

DC Electrical Characteristics

Vcci is the supply voltage associated with the input port. Vcco is the supply voltage associated with the output port.


Ch - 1	De ween et en	T4 C 1:4:	17	17	$T_A = -40^{\circ}$	C to 125°C	T T *4
Symbol	Parameter	Test Conditions	$\mathbf{V}_{ ext{CCA}}$	$\mathbf{V}_{ ext{CCB}}$	Min	Max	Unit
$ m V_{IHA}$	A port Input HIGH Voltage		1.2V to 1.95V	1.65V to 5.5V	$V_{\rm CCI}$ – 0.2	Vcci	V
VIHA	A port input firoff voltage		1.95V to 3.6V	1.03 V to 3.3 V	$V_{\rm CCI}$ – 0.4	V CCI	v
$V_{\rm ILA}$	A port Input LOW Voltage		1.2V to 1.95V	1.65V to 5.5V	0	0.15	V
V ILA	A port input LOW voltage		1.95V to 3.6V	1.03 / 10 3.3 /	0	0.13	v
V_{IHB}	B port Input HIGH Voltage		1.2V to 3.6V	1.65V to 5.5V	$V_{\rm CCI}$ – 0.4	$V_{\rm CCI}$	V
$V_{\rm ILB}$	B port Input LOW Voltage		1.2V to 3.6V	1.65V to 5.5V	0	0.15	V
Voha	A port Output HIGH Voltage	$\begin{split} I_{OHA} &= -20 uA, \\ V_{IB} &\geq V_{CCB} - 0.4 V \end{split}$	1.2V	1.65V to 5.5V	0.67* V _{CCA}		V
		$I_{OLA} = 180uA$, $V_{IB} \le 0.15V$	1.4V			0.4	V
V _{OLA}	A port Output LOW Voltage	$I_{OLA} = 220uA, V_{IB} \le 0.15V$	1.65V	1.65V to 5.5V		0.4	V
V OLA	A port Output LOW Voltage	$I_{OLA} = 300uA$, $V_{IB} \le 0.15V$	2.3V	1.03 / 10 3.3 /		0.4	V
		$I_{OLA} = 400uA, V_{IB} \le 0.15V$	3V			0.55	V
V_{OHB}	B port Output HIGH Voltage	I_{OHB} = -20 uA, $V_{IA} \ge V_{CCA}$ - 0.2V	1.2V	1.65V to 5.5V	0.67* V _{CCB}		V
		$I_{OLB} = 220uA, V_{IA} \le 0.15V$		1.65V		0.4	V
Volb	B port Output LOW Voltage	$I_{OLB} = 300uA, V_{IA} \le 0.15V$	1.2V to 3.6V	2.3V		0.4	V
V OLB	b port Output LOW voltage	$I_{OLB} = 400uA, V_{IA} \le 0.15V$	1.2 v to 5.6 v	3V		0.55	V
		$I_{OLB} = 620uA, V_{IA} \le 0.15V$		4.5V		0.55	V
V _{IH}	OE Input HIGH Voltage		1.2V to 3.6V	1.65V to 5.5V	0.65 * Vcca		V
V _{IL}	OE Input LOW Voltage		1.2V to 3.6V	1.65V to 5.5V		0.35 * Vcca	V

0 1 1	D	T . C . 194	***	***	$T_A = -40^{\circ}C$	C to 125°C	TT :
I _I Ir I _{OZ} O I _{CCA} V I _{CCA+ICCB} T	Parameter	Test Conditions	$\mathbf{V}_{\mathbf{CCA}}$	$\mathbf{V}_{ ext{CCB}}$	Min	Max	Unit
$I_{\rm I}$	Input leakage current	OE, $V_I = V_{CCI}$ or GND	1.2V	1.65V to 5.5V		1	μΑ
I_{OZ}	Off-state Leakage current	A or B port, OE = V _{IL}	1.2V	1.65V to 5.5V	-5	3	μΑ
			1.2V	1.65V to 5.5V	-2	16	
т	V _{CCA} Supply Current	V V I O	1.5V to 3.6V	2.3V to 5.5V		18	
ICCA		$V_I = V_O = \text{open}, I_O = 0$	3.6V	0		16	μΑ
			0	5.5V	-3	3	
			1.2V	1.65V to 5.5V		31	
т	W. Complex Comment	V V I O	1.5V to 3.6V	2.3V to 5.5V		31	1
1CCB	V _{CCA} Supply Current	$V_I = V_O = \text{open}, I_O = 0$	3.6V	0	-3	3	μΑ
			0	5.5V		16	
т т	Total Complex assessed	W W or CND I 0	1.2V	2.3V to 5.5V		40	4
ICCA + ICCB	Total Supply current	$V_I = V_{CCI}$ or GND, $I_O = 0$	1.5V to 3.6V	2.3V to 5.5V		42	μΑ
I_{CCZA}	Off-state V _{CCA} Supply	$V_I = V_O = Open, I_O = 0,$ OE = GND	1.2V	1.65V to 5.5V		15	μΑ
I_{CCZB}	Off-state V _{CCB} Supply	$V_I = V_O = Open$, $I_O = 0$, $OE = GND$	1.2V	1.65V to 5.5V		15	μΑ
C_{I}	Input Capacitance	OE	3.3V	3.3V		5.5	pF
C	Invest to section to Company	A Port	3.3V	3.3V		7.5	pF
C_{IO}	Input-to-output Capacitance	B Port	3.3V	3.3V		7.5	pF

Timing Requirements

Temperature Range: -40°C to 125°C

	$V_{\rm CCA} = 1.2 V$			$V_{\text{CCB}} = 1.8 \text{V} \pm 0.15 \text{V}$		$V_{\text{CCB}} = 2.5 \text{V} \pm 0.2 \text{V}$		$V_{\text{CCB}} = 3.3 \text{V} \pm 0.3 \text{V}$		$V_{CCB} = 5V \pm 0.5V$	
				MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Data Rate	Push-Pull			20		20		20		20	Mhna
Data Kate	Open-Drain			0.6		0.6		0.6		0.6	Mbps
tw Pulse	Data Immut	Push-Pull	50		50		50		50		200
Duration	Data Input Open-Drain		1250		1250		1250		1250		ns

	$V_{\rm CCA} {=}~1.5 \rm V \pm 0.1 \rm V$			$V_{\text{CCB}} = 1.8 \text{V} \pm 0.15 \text{V}$		$V_{\text{CCB}} = 2.5 \text{V} \pm 0.2 \text{V}$		3.3V ± 3V	$V_{CCB} = 5V \pm 0.5V$		Unit
				MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Data Rate	Push-Pull			40		40		40		40	Mbps
Data Rate	Open-Drain			0.7		0.7		0.7		0.7	Mibps
t _w Pulse	Data Innet	Push-Pull	25		25		25		25		ne
Duration	Data Input Open-Dra		1250		1250		1250		1250		ns

,	$V_{\rm CCA} = 1.8 \text{V} \pm 0.15 \text{V}$			1.8V ± 5V	$V_{\text{CCB}} = 2.5 \text{V} \pm 0.2 \text{V}$		$V_{\text{CCB}} = 3.3 \text{V} \pm 0.3 \text{V}$		$V_{CCB} = 5V \pm 0.5V$		Unit
				MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Data Bata	Push-Pull			40		50		50		50	Mhna
Data Rate	Open-Drain			0.8		0.8		0.8		0.8	Mbps
tw Pulse	twPulse Data Innert		25		20		20		20		20
Duration	Data Input Open-Drain	1250		1250		1250		1250		ns	

	$V_{CCA} = 2.5V \pm 0.2V$	7	$V_{CCB} = 2.5$	5V ± 0.2V	$V_{\text{CCB}} = 3.3 \text{V} \pm 0.3 \text{V}$		$V_{CCB} = 5V \pm 0.5V$		Unit
	V CCA – 2.3 V ± 0.2 V			MAX	MIN	MAX	MIN	MAX	Unit
Data Bata	Push-Pull			60		80		80	Mhna
Data Rate	Open-Drain			0.8		0.8		0.8	Mbps
tw Pulse	Data Innut	Push-Pull	16.7		12.5		12.5		
Duration	Data Input Open-Drain		1250		1250		1250		ns

	$V_{CCA} = 3.3V \pm 0.3V$	7	$V_{CCB} = 3.3$	$3V \pm 0.3V$	$V_{CCB} = 5$	Unit	
	VCCA - 3.3 V ± 0.3 V			MIN MAX MIN MAX		MAX	Unit
Data Bata	Push-Pull			90		110	Mbps
Data Rate	Open-	Open-Drain		0.8		0.8	Mibps
twPulse Data I want		Push-Pull	11		9		
Duration	Data Input Open-Drain		625		625		ns

AC Electrical Characteristics

I/O test circuits of Figures 2, 3, 4 & 5, $C_{LOAD} = 15 pF$, $R_{LOAD} = 1 M\Omega$, input pulse generator having the following characteristics: $Z_O = 50\Omega$, $PRR \le 10 MHz$, $dv/dt \ge 1 V/ns$

 V_{CCA} = 1.2V \pm 0.1V, Temperature Range: -40°C to 125°C

Symbol	Parameter	Test Conditions		= 1.8V 15V		= 2.5V .2V		= 3.3V .3V		= 5.0V .5V	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
t	High to Low	Push-Pull driving		15.8		14.5		13.8		12.8	
t _{PHL-A-B}	propagation delay	Open-Drain driving		17.4		16.8		15.2		13.9	ns
t	Low to High	Push-Pull driving		17.8		14.5		13.3		12.5	20
t _{PLH-A-B}	propagation delay	Open-Drain driving		745		581		495		414	ns
t	High to Low	Push-Pull driving		18.9		17.9		16.8		15.8	200
t _{PHL-B-A}	propagation delay	Open-Drain driving		16.2		13.6		12.5		11.5	ns
t	Low to High	Push-Pull driving		16.1		13.6		12.7		12.8	ns
t _{PLH-B-A}	propagation delay	Open-Drain driving		775		635		540		438	118
ten	Enable Time	OE to A or B		200		200		200		300	ns
t _{dis}	Disable Time	OE to A or B		28.1		22		20.1		19.6	ns
to.	A mont Disa Time	Push-Pull driving		18.4		15.3		14.3		13.4	ne
t_{RA}	A port Rise Time	Open-Drain driving		981		782		719		635	ns
t	D nort Dica Tima	Push-Pull driving		18.1		15.1		12.6		10.8	ns
t_{RB}	B port Rise Time	Open-Drain driving		1080		825		793		790	115
f	A post Fall Time	Push-Pull driving		14.5		12.5		11.4		9.8	ns
t_{FA}	A port Fall Time	Open-Drain driving		15.4		13.6		12.5		9.5	115
t	D nort Fall Time	Push-Pull driving		12.9		10.9		10.6		9.2	ne
t_{FB}	B port Fall Time	Open-Drain driving		13.5		11.6		11.5		10.7	ns
t _{PPSKEW}	Channel-to-Channel Skew	-		1.2		1.2		1.2		1.2	ns
f _{DATA}	Maximum Data Bata	Push-Pull driving		20		20		20		20	Mbps
IDATA	Maximum Data Rate	Open-Drain driving		0.6		0.6		0.6		0.6	Mobs

V_{CCA} = 1.5V ± 0.1V, Temperature Range: -40°C to 125°C

Symbol	Parameter	Test Conditions		$V_{CCB} = 1.8V$ $\pm 0.15V$		$V_{CCB} = 2.5V$ $\pm 0.2V$		= 3.3V .3V	$V_{CCB} = 5.0V$ $\pm 0.5V$		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
t	High to Low	Push-Pull driving		13.8		11.5		10.8		10.8	
$t_{\mathrm{PHL-A-B}}$	propagation delay	Open-Drain driving		14.4		12.8		12.2		12	ns
t	Low to High	Push-Pull driving		15.8		12.5		12.3		12.1	
t _{PLH-A-B}	propagation delay	Open-Drain driving		720		554		473		384	ns
	High to Low propagation delay	Push-Pull driving		15.9		13.9		13.8		15	
ι _{PHL-B-A}		Open-Drain driving		13.2		9.6		8.5		7.5	ns
t	Low to High	Push-Pull driving		13.1		8.6		7		5.8	
t _{PLH-B-A}	propagation delay	Open-Drain driving		745		603		519		407	ns
t _{en}	Enable Time	OE to A or B		200		200		200		300	ns
t _{dis}	Disable Time	OE to A or B		28.1		22		20.1		19.6	ns
	A . D: T'	Push-Pull driving		16.4		12.3		11.3		10.4	
t _{RA}	A port Rise Time	Open-Drain driving		982		756		692		610	ns
t_{RB}	B port Rise Time	Push-Pull driving		16.1		10.1		9.6		8.8	ns

Symbol	Parameter	Test Conditions		$V_{CCB} = 1.8V$ $\pm 0.15V$		$V_{CCB} = 2.5V$ $\pm 0.2V$		$V_{CCB} = 3.3V$ $\pm 0.3V$		$V_{CCB} = 5.0V$ $\pm 0.5V$	
			Min	Max	Min	Max	Min	Max	Min	Max	
		Open-Drain driving		1020		756		753		780	
t	\mathbf{t}_{FA} A port Fall Time	Push-Pull driving		11.4		9.5		8.1		7.2	***
ч _{FA}		Open-Drain driving		12.4		9.6		8.5		7.5	ns
t	B port Fall Time	Push-Pull driving		10.9		6.9		6.6		5.9	ns
t_{FB}		Open-Drain driving		11.5		8.6		8.5		7.7	
t _{PPSKEW}	Channel-to-Channel Skew	-		1.1		1.1		1.1		1.1	ns
£		Push-Pull driving		40		40		40		40	Mbps
f_{DATA}	Maximum Data Rate	Open-Drain driving		0.7		0.7		0.7		0.7	

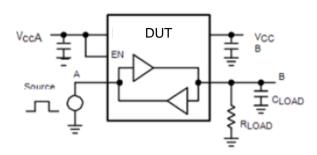
V_{CCA} = 1.8V ± 0.15V, Temperature Range: -40°C to 125°C

Symbol	Parameter	Test Conditions	$V_{CCB} = 1.8V$ $\pm 0.15V$		$V_{CCB} = 2.5V$ $\pm 0.2V$		$V_{CCB} = 3.3V$ $\pm 0.3V$		$V_{CCB} = 5.0V$ $\pm 0.5V$		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
+	High to Low	Push-Pull driving		12.1		9.1		8.1		7.4	
$t_{PHL-A-B}$	propagation delay	Open-Drain driving		11.4		9.9		9.3		8.9	ns
t	Low to High	Push-Pull driving		14.1		10.5		9.3		8.1	20
$t_{PLH-A-B}$	propagation delay	Open-Drain driving		729		584		466		346	ns
+	High to Low	Push-Pull driving		12.3		10		9.3		8.8	
$t_{PHL-B-A}$	propagation delay	Open-Drain driving		12.1		8.5		7.3		6.5	ns
+	Low to High propagation delay	Push-Pull driving		12.8		8.8		7.3		6.3	ns
ч РLH−В−А		Open-Drain driving		733		578		459		323	
ten	Enable Time	OE to A or B		200		200		200		200	ns
t _{dis}	Disable Time	OE to A or B		25.1		18.8		18.8		18.8	ns
		Push-Pull driving		14.9		10.8		9.8		9	ns
t_{RA}	A port Rise Time	Open-Drain driving		996		691		508		350	
+	D (D) Th	Push-Pull driving		15.3		11.6		8.6		8.6	ns
t_{RB}	B port Rise Time	Open-Drain driving		1001		677		546		323	
+	A A D HATE	Push-Pull driving		11		10.3		9.1		9.1	
t_{FA}	A port Fall Time	Open-Drain driving		9		6.7		5.8		5.2	ns
+	D . D 11/75	Push-Pull driving		10.4		8.8		4.9		4.8	ns
t_{FB}	B port Fall Time	Open-Drain driving		10.5		10.3		9.6		7.8	
t _{PPSKEW}	Channel-to-Channel Skew	-		1.1		1.1		1.1		1.1	ns
<u> </u>	M. I. D. D.	Push-Pull driving		40		50		50		50) (l
f _{DATA}	Maximum Data Rate	Open-Drain driving		0.8		0.8		0.8		0.8	Mbps

$V_{CCA} {=}~2.5V {\pm}~0.2V,$ Temperature Range: -40°C to 125°C

Crombal	Parameter	Test Conditions	$V_{CCB} = 2.5V \pm 0.2V$		$V_{CCB} = 3.3V \pm 0.3V$		$V_{CCB} = 5.0V \pm 0.5V$		Unit
Symbol			Min	Max	Min	Max	Min	Max	Omt
t	High to Low propagation delay	Push-Pull driving		7.8		6.6		5.9	200
$t_{PHL-A-B}$		Open-Drain driving		6.9		6.3		5.8	ns
t	Low to High	Push-Pull driving		8.5		7.4		6.5	200
$t_{ m PLH-A-B}$	propagation delay	Open-Drain driving		592		488		368	ns
t _{PHL-B-A}	High to Low	Push-Pull driving		7.4		6		5.3	ns

C11	Parameter	Test Conditions	$V_{CCB} = 2.5V \pm 0.2V$		$V_{CCB} = 3.3V \pm 0.3V$		$V_{CCB} = 5.0V \pm 0.5V$		T I :4
Symbol			Min	Max	Min	Max	Min	Max	Unit
	propagation delay	Open-Drain driving		523		441		428	
+	Low to High	Push-Pull driving		7.8		7.5		4.5	
t _{PLH-B-A}	propagation delay	Open-Drain driving		595		481		345	ns
t _{en}	Enable Time	OE to A or B		200		200		200	ns
t _{dis}	Disable Time	OE to A or B		15.7		12.9		11.2	ns
	A D	Push-Pull driving		9.1		8		7.3	ns
t_{RA}	A port Rise Time	Open-Drain driving		692		529		389	
t	B port Rise Time	Push-Pull driving		9.1		6.8		4.1	ns
t_{RB}		Open-Drain driving		693		483		304	
t	. D. 11 (7)	Push-Pull driving		7.1		5.9		5.5	ns
t _{FA}	A port Fall Time	Open-Drain driving		5.6		4.7		4	
+	D 4 F H T'	Push-Pull driving		6.8		5.1		4.2	ns
t_{FB}	B port Fall Time	Open-Drain driving		14.2		19.4		3	
t _{PPSKEW}	Channel-to-Channel Skew			1.1		1.1		1.1	ns
c	M. t. D. D.	Push-Pull driving		60		80		80	Mhaa
f _{DATA}	Maximum Data Rate	Open-Drain driving		0.8		0.8		0.8	Mbps


V_{CCA} = 3.3V \pm 0.3V, Temperature Range: -40°C to 125°C

G 1 :	Parameter	T C . 12.0	$V_{CCB} = 3$.	$3V \pm 0.3V$	$V_{CCB} = 5$.	T	
Symbol		Test Conditions	Min	Max	Min	Max	Unit
+	High to Low	Push-Pull driving		6.1		5.3	
t _{PHL-A-B}	propagation delay	Open-Drain driving		429		332	ns
+	Low to High	Push-Pull driving		7.9		7.5	
t _{PLH-A-B}	propagation delay	Open-Drain driving		439		352	ns
+	High to Low	Push-Pull driving		5.9		4.8	
t _{PHL-B-A}	propagation delay	Open-Drain driving		5.5		4.5	ns
+	Low to High	Push-Pull driving		5.9		5.4	
t _{PLH-B-A}	propagation delay	Open-Drain driving		449		339	ns
ten	Enable Time	OE to A or B		200		200	ns
t _{dis}	Disable Time	OE to A or B		11.9		9.8	ns
4	, D: T'	Push-Pull driving		7.1		6.3	
t_{RA}	A port Rise Time	Open-Drain driving		446		337	ns
+	D (D; m;	Push-Pull driving		6.8		4.9	
t_{RB}	B port Rise Time	Open-Drain driving		427		290	ns
+	A . F. II . F.	Push-Pull driving		5.6		4.4	
t_{FA}	A port Fall Time	Open-Drain driving		4.5		3.5	ns
+	D (EUE)	Push-Pull driving		5.3		3.9	
t_{FB}	B port Fall Time	Open-Drain driving		4.2		3.1	ns
t _{PPSKEW}	Channel-to-Channel Skew			1.1		1.1	ns
£.	M. D. D.	Push-Pull driving		90		110	Mhaa
f_{DATA}	Maximum Data Rate	Open-Drain driving		0.8		0.8	Mbps

Test Circuits

DUT **VCCB** Source

Figure 2: Rail-to-Rail Driving A

Figure 3: Rail-to-Rail Driving B

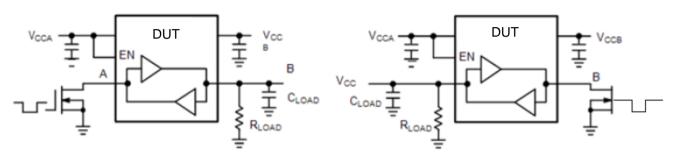
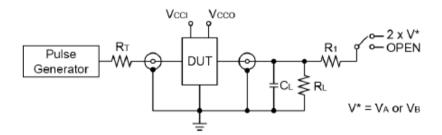
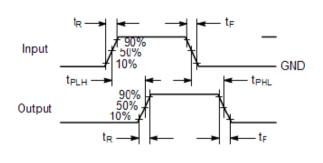



Figure 4: Open-Drain Driving A

Figure 5: Open-Drain Driving B

Test	Switch
t _{PZH} , t _{PHZ}	Open
t_{PZL} , t_{PLZ}	2 x V*


 $C_L = 15pF$

 $R_L = R_1 = 50k\Omega$

 $R_T = Z_{OUT}$ of pulse generator (Typically 50 Ω) $V^* = V_A$ or V_B for A or B measurements, respectively.

Figure 6: Test Circuit for Enable/Disable Time Measurement

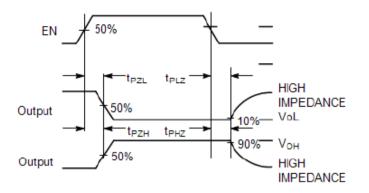


Figure 7: Timing Definitions for Propagation Delays and Enable/Disable Measurement

Functional Description

Level Translator Architecture

The LXS0108Q is a 8-bit configurable dual supply level shifter with edge rate accelerators (one shots) to improve the overall data rate. The A port operating voltage range is from 1.2V to 3.6V, and the B port is from 1.65V to 5.5V. While this device is designed for open drain applications, the device can also translate push-pull CMOS logic outputs.

The device has integrated a pull-up resistor on each I/O pin. This pull-up resistor is used to pull the I/O line to either V_{CCA} (called R_{PUA}) or V_{CCB} (called R_{PUA}). When the output is driving low, R_{PUA} and R_{PUB} are set to $40k\Omega$ resistors. In contrast, When the output is driving low, R_{PUA} and R_{PUB} are set to $40k\Omega$ resistors because this feature provides a lower static power consumption, a lower VOL values, and a faster simultaneous switching performance. R_{PUA} and R_{PUB} are disabled when OE is Low to switch off the device.

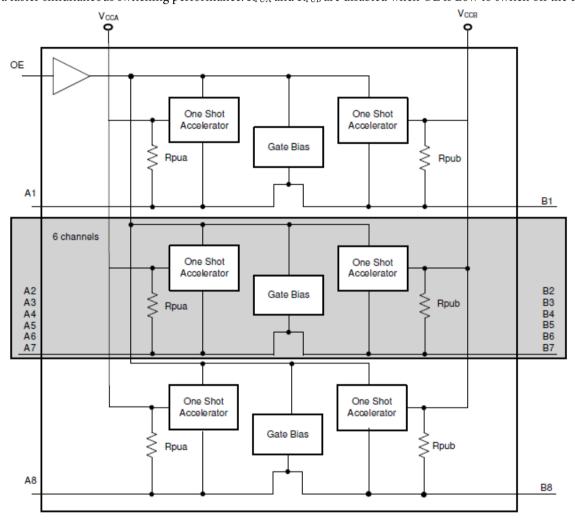


Figure 8. Functional Block Diagram

Input Driver Requirements

The rise and fall time of a signal depends on the edge-rate and output impedance of the external device driving LXS0108Q data I/Os, as well as the capacitive load on the data lines. Similarly, the propagating delay and maximum data rates also depend on the output impedance of the external driver. The AC timing parameters listed in the datasheet assume that the output impedance of the external drivers is less than 50Ω .

Output Enable and Disable (OE)

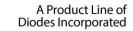
The LXS0108Q has an Output Enable pin (OE) that enables the device by active-high. In contrast, setting the OE pin to a logic low state can switch off the device to a minimize power consumption with all I/Os in high-impedance. Normal translation occurs when the OE pin is equal to a logic high state where the OE pin in referenced to the V_{CCA} supply rail.

Output Load Considerations

Care shall be taken consideration careful for PCB trace lengths to avoid excessive capacitive loading and to ensure that proper one-shot triggering takes place. PCB signal trace-lengths should be kept short enough such that the round-trip delay of any reflection is less than the one-shot duration, which is approximately 30ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. Both PCB trace length and connectors add to the capacitance of the LXS0108Q output. Therefore, the lumped-load capacitance shall be considered in order to avoid one-shot retriggering, or bus contention, or output signal oscillations.

Power Supply Guidelines

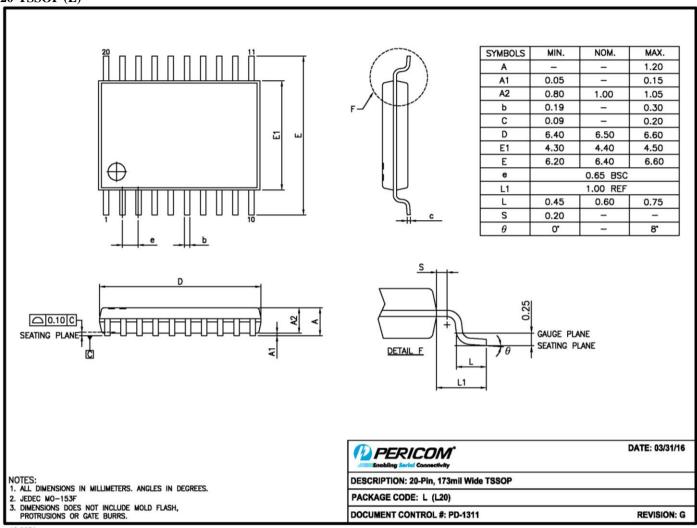
For normal operation, the V_{CCA} must be less than or equal to V_{CCB} where the LXS0108Q does not require power sequencing between V_{CCA} and V_{CCB} during power-up. To minimize power noise from supply rails, decouple capacitors, $0.01\mu F$ to $0.1\mu F$ should be placed as closed as V_{CCA} and V_{CCB} . The PCB trace of signals must be kept short enough so that the round-trip delay of any reflection is less than the one-shot duration, approximately 30ns.


Part Marking

LXS01 08Q1LE YYWWXX

YY: Date Code (Year) WW: Date Code (Workweek) 1st X: Assembly Code 2nd X: Fab Code

Bar above 2nd "X" means Cu wire



Packaging Mechanical

20-TSSOP(L)

16-0074

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Part Number	Package Code	Package Description
LXS0108QLEX	L	20-pin, 173mil Wide (TSSOP)

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. Q = Automotive Compliant
- 5. E = Pb-free and Green
- 6. X suffix = Tape/Reel

IMPORTANT NOTICE

- DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-andconditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/importantnotice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com