

HIGH-VOLTAGE STEP-DOWN CONVERTER

General Description

This demonstration board utilizes the AL17052 to build a cost-effective solution for high-voltage buck converter applications.

The AL17052 integrates a 700V MOSFET and can work with a single winding inductor and very few external components to provide accurate constant voltage output and good dynamic performance.

This user guide contains valuable operation information for users. Included is a bill of materials that describes the parts used on this board. A schematic and PCB layout are also included, along with measured system performance characteristics and test waveforms. These materials can be used as a reference design for your products to improve your product's time to market.

Key Features

- 1. Universal 85 to 300V_{AC} Input Range
- 2. Constant Voltage (CV) Control
- 3. Internal MOSFET up to 700V
- 4. Low Operation Current: 100µA (Static)
- 5. Undervoltage Lock Out (UVLO)
- 6. Output Short Protection
- 7. Overload Protection
- 8. Overtemperature Protection (OTP)
- 9. Lower Standby Power

Applications

- Home appliances
- IoT applications
- Industrial controls
- Standby power

Specifications

Parameter	Value
AC Input Voltage	85Vac ~ 265Vac
Output Power	0.25W
Output Current	50mA
Output Voltage	5V
Efficiency	>65%@120VAC/50mA
Dimension	32mm*15mm
RoHS Compliance	Yes

Evaluation Board

Figure 1: Top View

Connection Instructions

AC Line Input: White L line AC Neutral Input: White N line Positive Output: Vout (Red) Negative Output: Gnd (Black)

HIGH-VOLTAGE STEP-DOWN CONVERTER

Board Layout

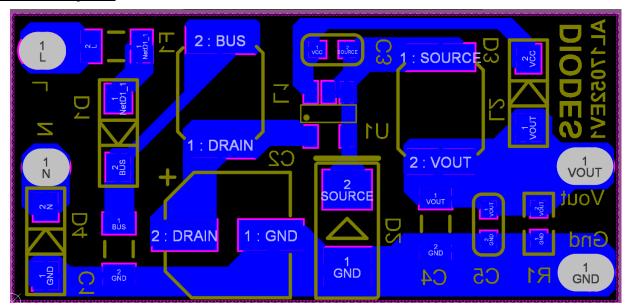


Figure 2: PCB Layout Bottom View

Quick Start Guide

- 1. Ensure that the AC source is switched OFF or disconnected.
- Connect the AC line wires of the power supply to the "L" and "N" wires on the left side of the board.
- 3. Connect the red terminal of the electronic load to the "VOUT" wire.
- 4. Connect the black terminal of the electronic load to the "GND" wire.
- 5. Turn on the main switch. The electronic load should show a 5V output.

Schematic

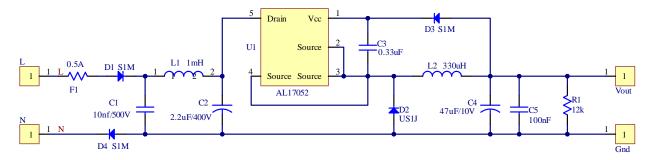


Figure 3: Schematic Circuit

HIGH-VOLTAGE STEP-DOWN CONVERTER

Bill of Materials

	AL17052 EV1 BILL OF MATERIAL									
Qty	Ref	Value	Description	Package	Manufacturer	Part Number				
1	F1	500mA	Fuse 500mA	1206	Littelfuse	0466.500NRHF				
3	D1,D3,D4	S1M	Diode,1000V,1A	SOD123	Diodes	S1MSWFM				
1	D2	US1J	Diode,600V,1A,trr=75ns	SMA	Diodes	US1J				
1	C1	10nF	Ceramic Capacitor,1KV,X7R,10%	1206	FengHua	1206B103K102NT				
1	C2	2.2uF	Electrolytic Capacitor,400V,6.3*10.5	SMD	AISHI	EMK2GM2R2EB0D00R				
1	C3	0.33uF	Ceramic Capacitor,25V,X7R,10%	0603	FengHua	0603B334K250NT				
1	C4	47uF	Ceramic Capacitor,10V,X5R,20%	1206	Wurth	885012108012				
1	C5	100nF	Ceramic Capacitor,16V,X7R,10%	0603	FengHua	0603B104K160NT				
1	L1	1mH	Inductor,1mH,Rdc=13.8Ω,Isat=0.07A	SMD	Wurth	7445530				
1	L2	330uH	Inductor,330uH,Rdc=5Ω,Isat=0.16A	SMD	Wurth	74455233				
1	R1	12kΩ	SMD Film Resistor,1%	0603	UniOhm	0603WAF1202T5E				
1	U1	AL17052	IC	SOT23-5	Diodes	AL17052				
2	L, N	Input line	White color,30mm	=	-	-				
1	Vout	Output line	Red color,30mm	=	-	-				
1	Gnd	Output line	Black color,30mm			-				
1	-	PCB board	Single layer, 15.2mm*31.9mm, 1.6mm tl	-						

System Performance

The AL17052 evaluation board has excellent system performance. With very low BOM costs, the system can achieve high efficiency, low-load regulation rates, low ripple, and good load-transient performance.

System efficiency

Figure 6 shows the measured efficiency versus load. The system efficiency at a 50mA current load could reach 65.2% with a $120V_{AC}$ input and 61.2% with a $230~V_{AC}$ input.

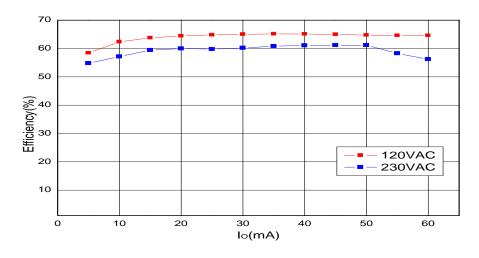


Figure 4: Efficiency vs Load Current

HIGH-VOLTAGE STEP-DOWN CONVERTER

Load Regulation

The measured output voltage versus load is shown in Figure 7. The output voltage ranges from 5.32V to 4.88V, indicating a load regulation rate lower than 5%.

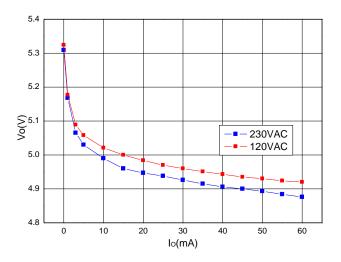


Figure 5: Output Voltage vs Load Current

Note: Vf of D2 will make slight differences in the output voltage.

Standby Power

The measured input voltage versus standby power is shown in Figure 8. The input voltage ranges from 85V to 265V, indicating a standby power lower than 12mW.

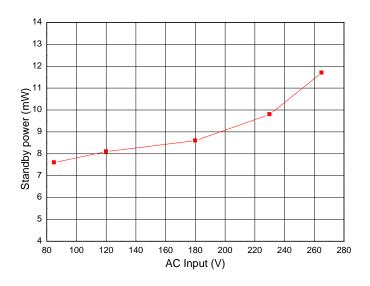


Figure 6: Input voltage vs No load Power

Note: If you want to lower standby power, you need to increase R1, but it will increase the no-load voltage.

HIGH-VOLTAGE STEP-DOWN CONVERTER

Output Ripple

The output voltage ripple is measured at 50mA load at both $120V_{AC}$ and $230V_{AC}$ input. In Figure 8, channel 1 (in red) shows the waveform of V_{OUT} .

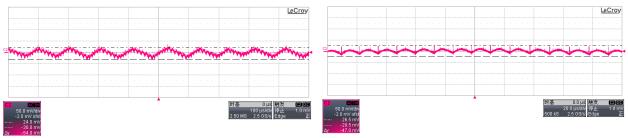


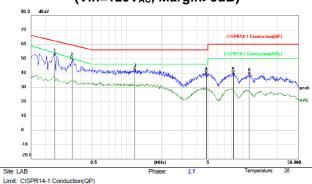
Figure 7: Output Voltage Ripple with 120V_{AC} (Left) and 230V_{AC} (Right)

The output voltage ripple peak-to-peak value is 54mV for 120V_{AC} input and 47mV for 230V_{AC}.

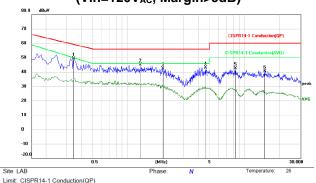
Load Transient Response

The load transient response is tested with the load repeatedly switching from 0mA to 60mA in a 10Hz frequency. The load switching slew rate is 50mA/µs. In Figure 9, channel 2 (in red) shows the waveform of V_{OUT} and channel 4 (in green) shows I_{OUT}.

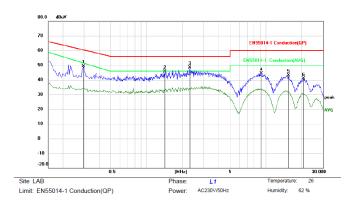
Figure 8: Load Transient Waveform with 120V_{AC} (Left) and 230V_{AC} (Right)


With $120V_{AC}$ input, the maximum undershoot caused by the load transient is 700mV. With $230V_{AC}$ input, the maximum undershoot caused by the load transition is 800mV. Thus, the minimum output voltage in the worst case is 4.44V.

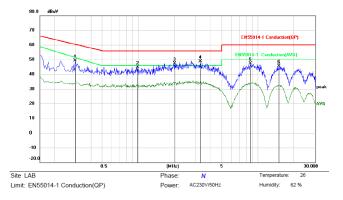
HIGH-VOLTAGE STEP-DOWN CONVERTER


EMI Conduction Test

Line Terminal (Vin=120V_{AC}, Margin>9dB)


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.2400	33.32	19.64	52.96	62.10	-9.14	peak	
2	0.3390	30.25	19.70	49.95	59.23	-9.28	peak	
3	1.1760	22.46	19.80	42.26	56.00	-13.74	peak	
4	4.8300	20.21	19.64	39.85	56.00	-16.15	peak	
5	8.2725	19.98	19.75	39.73	60.00	-20.27	peak	
6	11.4090	19.23	19.87	39.10	60.00	-20.90	peak	

Neutral Terminal (Vin=120V_{AC}, Margin>9dB)


	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	*	0.3435	29.42	19.87	49.29	59.12	-9.83	peak	
	2		1.2795	25.42	19.80	45.22	56.00	-10.78	peak	
	3		1.9995	22.61	19.68	42.29	56.00	-13.71	peak	
ĺ	4		4.6275	23.47	19.74	43.21	56.00	-12.79	peak	
ĺ	5		8.3354	22.75	19.98	42.73	60.00	-17.27	peak	
	6		14.8650	20.83	19.91	40.74	60.00	-19.26	peak	

Line Terminal (Vin=230V_{AC},Margin>7dB)

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2985	29.72	19.69	49.41	60.28	-10.87	peak	
2	1.4190	25.81	19.77	45.58	56.00	-10.42	peak	
3 *	2.3010	28.49	19.78	48.27	56.00	-7.73	peak	
4	9.1365	24.67	19.78	44.45	60.00	-15.55	peak	
5	15.4365	22.98	20.10	43.08	60.00	-16.92	peak	
6	20.5260	20.60	20.38	40.98	60.00	-19.02	peak	

Neutral Terminal (Vin=230V_{AC},Margin>7dB)

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
_			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.2985	29.54	19.94	49.48	60.28	-10.80	peak	
	2		0.9870	24.94	19.84	44.78	56.00	-11.22	peak	
	3		2.0175	27.67	19.68	47.35	56.00	-8.65	peak	
_	4	*	3.3045	28.99	19.85	48.84	56.00	-7.16	peak	
	5		8.6640	27.29	19.98	47.27	60.00	-12.73	peak	
	6		14.9280	25.76	19.91	45.67	60.00	-14.33	peak	

HIGH-VOLTAGE STEP-DOWN CONVERTER

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com