DUAL SCHMITT TRIGGER INVERTERS ### **Description** The 74LVC2G14 is a dual Schmitt trigger inverter gate with standard push-pull outputs. The device is designed for operation with a power supply range of 1.65V to 5.5V. The inputs are tolerant to 5.5V, allowing this device to be used in a mixed-voltage environment. The device is fully specified for partial power down applications using $I_{\rm OFF}$. The $I_{\rm OFF}$ circuitry disables the output preventing damaging current backflow when the device is powered down. The gate performs the positive Boolean function: $$Y = \overline{A}$$ #### **Features** - Wide Supply Voltage Range from 1.65V to 5.5V - ±24mA Output Drive at 3.0V - CMOS Low Power Consumption - I_{OFF} Supports Partial-Power-Down Mode Operation - Inputs Accept up to 5.5V - ESD Protection Tested per JESD 22 - Exceeds 2000V Human Body Model (A114) - Exceeds 1000V Charged Device Model (C101) - Latch-up Exceeds 100mA per JESD 78, Class I - X2-DFN1409-6 Package Designed as a Direct Replacement for Chip Scale Packaging - Range of Package Options SOT26, SOT363, X1-DFN1010-6 (Type B), X2-DFN1010-6, X2-DFN1409-6, and X2-DFN1410-6 - Leadless Packages Named per JESD30E - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) - Halogen and Antimony Free. "Green" Device (Note 3) - For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. https://www.diodes.com/quality/product-definitions/ ### **Pin Assignments** # **Applications** - Voltage level shifting - General-purpose logics - Power down signal isolations - Wide array of products such as: - PCs, networking, notebooks, netbooks, tablets - Computer peripherals, hard drives, SSD, CD/DVD ROM - TV, DVD, DVR, set-top boxes - Cell phones, personal navigations/GPS - MP3 players, cameras, video recorders Notes: - 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. - 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. - 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. ## **Pin Descriptions** | Pin Name | Pin Number | Function | | | |-----------------|------------|----------------|--|--| | 1A | 1 | Data Input | | | | GND | 2 | Ground | | | | 2A | 3 | Data Input | | | | 2Y | 4 | Data Output | | | | V _{CC} | 5 | Supply Voltage | | | | 1Y | 6 | Data Output | | | # **Logic Diagram** ### **Function Table** | Inputs | Output | |--------|--------| | Α | Y | | Н | L | | L | Н | # **Absolute Maximum Ratings** (Notes 4 & 5) (@T_A = +25°C, unless otherwise specified.) | Symbol | Parameter | Rating | Unit | |------------------|---|------------------------------|------| | ESD HBM | Human Body Model ESD Protection | 2 | kV | | ESD CDM | Charged Device Model ESD Protection | 1 | kV | | Vcc | Supply Voltage Range | -0.5 to +6.5 | V | | VI | Input Voltage Range | -0.5 to +6.5 | V | | Vo | Voltage Applied to Output in High Impedance or IOFF State | -0.5 to +6.5 | V | | Vo | Voltage Applied to Output in High or Low State | -0.3 to V _{CC} +0.5 | V | | l _{IK} | Input Clamp Current V₁ < 0 | -50 | mA | | I _{OK} | Output Clamp Current V _O < 0 | -50 | mA | | Io | Continuous Output Current | -50 | mA | | _ | Continuous Current Through V _{DD} or GND | ±100 | mA | | T_J | Operating Junction Temperature | -40 to +150 | °C | | T _{STG} | Storage Temperature | -65 to +150 | °C | Notes: - 4. Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability. 5. Forcing the maximum allowed voltage could cause a condition exceeding the maximum current or conversely forcing the maximum current could cause. - a condition exceeding the maximum voltage. The ratings of both current and voltage must be maintained within the controlled range. # Recommended Operating Conditions (Note 6) (@T_A = +25°C, unless otherwise specified.) | Symbol | | Parameter | Min | Max | Unit | | |-----------------|---|-------------------------|------|-----------------|------|--| | V | Operating Voltage | Operating | 1.65 | 5.5 | V | | | V _{CC} | Operating Voltage | Data Retention Only | 1.5 | _ | V | | | VI | Input Voltage | | 0 | 5.5 | V | | | Vo | Output Voltage | | 0 | V _{CC} | V | | | | I _{OH} High-Level Output Current | V _{CC} = 1.65V | _ | -4 | | | | | | V _{CC} = 2.3V | _ | -8 | mA | | | Іон | | V _{CC} = 3V | _ | -16 | | | | | | | _ | -24 | | | | | | $V_{CC} = 4.5V$ | _ | -32 | | | | | | V _{CC} = 1.65V | _ | 4 | | | | | | V _{CC} = 2.3V | _ | 8 | mA | | | l _{OL} | Low-Level Output Current | | _ | 16 | | | | | | $V_{CC} = 3V$ | _ | 24 | | | | | | V _{CC} = 4.5V | _ | 32 | | | | T _A | Operating Free-Air Temperature | _ | -40 | +125 | °C | | Note: 6. Unused inputs should be held at V_{CC} or Ground. # **Electrical Characteristics** (@T_A = +25°C, unless otherwise specified.) | Cumbal | Davamatan | Took Conditions | | -40°C to | +85°C | -40°C to | +125°C | l locit | | |----------------|--|-------------------------------|-----------------|-----------------------|-------|-----------------------|--------|---------|--| | Symbol | Parameter | Test Conditions | V _{CC} | Min | Max | Min | Max | Unit | | | | | | 1.8V | 0.70 | 1.50 | 0.70 | 1.70 | | | | | | | 2.3V | 1.00 | 1.80 | 1.00 | 2.00 | | | | V_{T+} | Positive-Going Input
Threshold Voltage | _ | 3V | 1.30 | 2.20 | 1.30 | 2.40 | V | | | | Threshold Voltage | | 4.5V | 1.90 | 3.10 | 1.90 | 3.30 | | | | | | | 5.5V | 2.20 | 3.60 | 2.20 | 3.80 | | | | | | | 1.8V | 0.25 | 0.90 | 0.25 | 1.10 | | | | | | | 2.3V | 0.40 | 1.15 | 0.4 | 1.35 | | | | V_{T-} | Negative-Going Input
Threshold Voltage | _ | 3V | 0.60 | 1.50 | 0.6 | 1.7 | V | | | | Threshold Voltage | | 4.5V | 1.00 | 2.00 | 1 | 2.2 | | | | | | | 5.5V | 1.20 | 2.30 | 1.2 | 2.5 | | | | | | | 1.8V | 0.15 | 1.00 | 0.15 | 1.20 | | | | | I bustones in | | 2.3V | 0.25 | 1.10 | 0.25 | 1.30 | 1 | | | ΔV_{T} | Hysteresis
(V _{T+} -V _{T-)} | _ | 3V | 0.40 | 1.20 | 0.40 | 1.40 | V | | | | (- | | 4.5V | 0.60 | 1.50 | 0.60 | 1.70 | | | | | | | 5.5V | 0.70 | 1.70 | 0.70 | 1.90 | | | | | | I _{OH} = -100μA | 1.65V to 5.5V | V _{CC} - 0.1 | _ | V _{CC} - 0.1 | _ | | | | | | I _{OH} = -4mA | 1.65V | 1.2 | _ | 0.95 | _ | | | | 1.7 | Link Lavel Output Valtage | I _{OH} = -8mA | 2.3V | 1.9 | _ | 1.7 | _ | V | | | V_{OH} | High-Level Output Voltage | I _{OH} = -16mA | - 3V | 2.4 | _ | 2.2 | _ | V | | | | | I _{OH} = -24mA | 3 V | 2.3 | _ | 2.0 | _ | | | | | | I _{OH} = -32mA | 4.5V | 3.8 | _ | 3.4 | _ | | | | | | I _{OL} = 100μA | 1.65V to 5.5V | _ | 0.1 | _ | 0.10 | | | | | | I _{OL} = 4mA | 1.65V | _ | 0.45 | _ | 0.70 | | | | | Law Lavel Output Valtage | I _{OL} = 8mA | 2.3V | _ | 0.3 | _ | 0.45 | V | | | V_{OL} | Low-Level Output Voltage | I _{OL} = 16mA | 2)./ | _ | 0.4 | _ | 0.60 | V | | | | | I _{OL} = 24mA | 3V | _ | 0.55 | _ | 0.80 | | | | | | I _{OL} = 32mA | 4.5V | _ | 0.55 | _ | 0.80 | 1 | | | lı | Input Current | V _I = 5.5V or GND | 0 to 5.5V | _ | ± 5 | _ | ±20 | μΑ | | | loff | Power Down Leakage Current | | 0 | _ | ± 10 | _ | ±20 | μΑ | | | Icc | Supply Current | $V_I = 5.5V$ or GND $I_O = 0$ | 1.65V to 5.5V | _ | 10 | _ | 40 | μA | | # Package Characteristics ((@ $T_A = +25$ °C, $V_{CC} = 3.3$ V, unless otherwise specified.) | Symbol | Parameter | Package | Conditions | Min | Тур | Max | Unit | |---------------|---------------------|-------------------------|--|-----|-----|-----|----------| | Cı | Input Capacitance | Typical of all packages | $V_{CC} = 3.3V$
$V_{I} = V_{CC}$ or GND | _ | 3.5 | _ | pF | | | | SOT26 | | _ | 204 | _ | | | | | SOT363 | | _ | 371 | _ | | | | Thermal Resistance | X2-DFN1410-6 | (Nata 7) | _ | 430 | _ | °C/W | | θ_{JA} | Junction-to-Ambient | X2-DFN1409-6 | (Note 7) | _ | 450 | _ | -C/VV | | | | X1-DFN1010-6 (Type B) | | _ | 495 | _ | | | | | X2-DFN1010-6 | | _ | 510 | _ | | | | | SOT26 | | _ | 52 | _ | | | | | SOT363 | | _ | 143 | _ | | | 0 | Thermal Resistance | X2-DFN1410-6 | (Noto 7) | _ | 190 | _ | °C // // | | θJC | Junction-to-Case | X2-DFN1409-6 | (Note 7) | _ | 225 | _ | °C/W | | | | X1-DFN1010-6 (Type B) | | _ | 245 | _ | | | | | X2-DFN1010-6 | = | _ | 250 | _ | | Note: ## **Switching Characteristics** $T_A = -40$ °C to +85°C, $C_L = 30$ or 50pF (See Figure 1) | Parameter | Parameter From To (Input) (Output) | | | = 1.8V
.15V | | = 2.5V
).2V | | : 3.3V
).3V | | = 5V
).5V | Unit | |-----------------|------------------------------------|----------|-----|----------------|-----|----------------|-----|----------------|-----|--------------|------| | | (input) | (Output) | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{PD} | А | Y | 0.5 | 11.0 | 0.5 | 6.5 | 0.5 | 6.0 | 0.5 | 4.3 | ns | $T_A = -40$ °C to +125°C, $C_L = 30$ or 50pF (See Figure 1) | 14 = -40 0 to +125 0; 0[= 50 01 50 pr (occ righte 1) | | | | | | | | | | | | |---|-----------------|----------|-----|----------------|-----|----------------|-----|---------------|------------------------|--------------|------| | Parameter | From
(Input) | To | | : 1.8V
.15V | | : 2.5V
).2V | | : 3.3V
.3V | V _{CC}
± 0 | = 5V
).5V | Unit | | | (input) | (Output) | Min | Max | Min | Max | Min | Max | Min | Max | İ | | t _{PD} | Α | Y | 0.5 | 12.0 | 0.5 | 7.2 | 0.5 | 6.7 | 0.5 | 4.7 | ns | # **Operating Characteristics** ### $T_A = +25$ °C | | Parameter | | Test | V _{CC} = 1.8V | $V_{CC} = 2.5V$ | V _{CC} = 3.3V | V _{CC} = 5V | Unit | |--|-----------------|-------------------------------|------------|------------------------|-----------------|------------------------|----------------------|--------| | | | | Conditions | Тур | Тур | Тур | Тур | O.IIIC | | | C _{PD} | Power Dissipation Capacitance | f = 10MHz | 17 | 19 | 20 | 21 | pF | ^{7.} Test condition for all packages: Device mounted on FR-4 substrate PC board, 2oz copper with minimum recommended pad layout. ## **Parameter Measurement Information** | V | Inp | outs | V | 0. | D. | | |-----------------|-----|--------------------------------|--------------------|------|----------------|--| | Vcc | VI | t _R /t _F | V _M | C∟ | R _L | | | 1.8V ± 0.15V | Vcc | ≤ 2ns | V _{CC} /2 | 30pF | 1kΩ | | | 2.5V ± 0.2V | Vcc | ≤ 2ns | V _{CC} /2 | 30pF | 500Ω | | | $3.3V \pm 0.3V$ | 3V | ≤ 2.5ns | 1.5V | 50pF | 500Ω | | | 5V ± 0.5V | Vcc | ≤ 2.5ns | V _{CC} /2 | 50pF | 500Ω | | **Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs** Figure 1 Load Circuit and Voltage Waveforms Notes: - A. Includes test lead and test apparatus capacitance. B. All pulses are supplied at pulse repetition rate ≤ 10MHz. C. Inputs are measured separately one transition per measurement. - D. t_{PLH} and t_{PHL} are the same as t_{PD}. ## **Ordering Information** 74 : Logic Prefix LVC: 1.65V to 5.5V Logic Family 2G: Two Gates 14: Inverter/Driver with Schmitt Trigger Inputs W6: SOT26 **DW: SOT363** FW5: X1-DFN1010-6 FW4: X2-DFN1010-6 (Type B) FX4: X2-DFN1409-6 FZ4: X2-DFN1410-6 | Part Number | Part Number | Package | Package (Note 8) | Pookogo Sizo | Packing | (Note 9) | |----------------|-------------|---------|--|--|---------|-------------| | Fait Number | Suffix | Code | Fackage (Note o) | Package Size | Qty. | Carrier | | 74LVC2G14W6-7 | -7 | W6 | SOT26 | 2.8mm x 2.2mm x 1.1mm
0.95mm Lead Pitch | 3000 | Tape & Reel | | 74LVC2G14DW-7 | -7 | DW | SOT363 | 2.0mm x 2.0mm x 1.1mm
0.65mm Lead Pitch | 3000 | Tape & Reel | | 74LVC2G14FW5-7 | -7 | FW5 | X1-DFN1010-6 (Type B) | 1.0mm x 1.0mm x 0.5mm
0.35mm Pad Pitch | 5000 | Tape & Reel | | 74LVC2G14FW4-7 | -7 | FW4 | X2-DFN1010-6 | 1.0mm x 1.0mm x 0.4mm
0.35mm Pad Pitch | 5000 | Tape & Reel | | 74LVC2G14FX4-7 | -7 | FX4 | X2-DFN1409-6
Chip Scale Alternative | 1.4mm x 0.9mm x 0.4mm
0.5mm Pad Pitch | 5000 | Tape & Reel | | 74LVC2G14FZ4-7 | -7 | FZ4 | X2-DFN1410-6 | 1.4mm x 1.0mm x 0.4mm
0.5mm Pad Pitch | 5000 | Tape & Reel | 8. Pad layout as shown on our suggested pad layout, which can be found on our website at http://www.diodes.com/package-outlines.html. Notes: 9. The taping orientation is located on our website https://www.diodes.com/assets/Packaging-Support-Docs/ap02007.pdf. # **Marking Information** #### (1) SOT26, SOT363 XX: Identification Code Y: Year 0 to 9 (ex: 2 = 2022) W: Week: A to Z: Week 1 to 26; a to z: Week 27 to 52; z Represents Week 52 and 53 X: A to Z: Internal Code | Part Number | Package | Identification Code | | | |---------------|---------|---------------------|--|--| | 74LVC2G14W6-7 | SOT26 | Z5 | | | | 74LVC2G14DW-7 | SOT363 | Z5 | | | ## Marking Information (continued) ### (2) X1-DFN1010-6 (Type B), X2-DFN1010-6, X2-DFN1409-6, X2-DFN1410-6 (Top View) XX: Identification Code <u>Y</u>: Year 0 to 9 (ex: 2 = 2022) W: Week: A to Z: Week 1 to 26; a to z: Week 27 to 52; z Represents Week 52 and 53 \underline{X} : A to Z: Internal Code | Part Number | Package | Identification Code | |----------------|-----------------------|---------------------| | 74LVC2G14FW4-7 | X2-DFN1010-6 | Z5 | | 74LVC2G14FW5-7 | X1-DFN1010-6 (Type B) | W5 | | 74LVC2G14FX4-7 | X2-DFN1409-6 | X5 | | 74LVC2G14FZ4-7 | X2-DFN1410-6 | Z5 | # **Package Outline Dimensions** #### SOT26 | SOT26 | | | | |-------|----------------------|------|------| | Dim | Min | Max | Тур | | A1 | 0.013 | 0.10 | 0.05 | | A2 | 1.00 | 1.30 | 1.10 | | A3 | 0.70 | 0.80 | 0.75 | | b | 0.35 | 0.50 | 0.38 | | C | 0.10 | 0.20 | 0.15 | | D | 2.90 | 3.10 | 3.00 | | е | - | - | 0.95 | | e1 | - | - | 1.90 | | Е | 2.70 | 3.00 | 2.80 | | E1 | 1.50 | 1.70 | 1.60 | | L | 0.35 | 0.55 | 0.40 | | а | - | - | 8° | | a1 | - | - | 7° | | All | All Dimensions in mm | | | **SOT363** | | SOT363 | | | | |----------------------|-------------|------|-------|--| | Dim | Min | Max | Тур | | | A1 | 0.00 | 0.10 | 0.05 | | | A2 | 0.90 | 1.00 | 0.95 | | | b | 0.10 | 0.30 | 0.25 | | | С | 0.10 | 0.22 | 0.11 | | | D | 1.80 | 2.20 | 2.15 | | | Е | 2.00 | 2.20 | 2.10 | | | E1 | 1.15 | 1.35 | 1.30 | | | е | e 0.650 BSC | | | | | F | 0.40 | 0.45 | 0.425 | | | L | 0.25 | 0.40 | 0.30 | | | а | 0° | 8° | | | | All Dimensions in mm | | | | | # Package Outline Dimensions (continued) Please see http://www.diodes.com/package-outlines.html for the latest version. #### X1-DFN1010-6 (Type B) | X1-DFN1010-6 | | | | | |----------------------|----------|-------------|------|--| | | (Ty | pe B) | | | | Dim | Min | Min Max Typ | | | | Α | - | 0.50 | 0.39 | | | A1 | - | 0.04 | - | | | b | 0.12 | 0.20 | 0.15 | | | D | 0.95 | 1.050 | 1.00 | | | Ε | 0.95 | 1.050 | 1.00 | | | е | 0.35 BSC | | | | | e1 | 0.55 BSC | | | | | L3 | 0.27 | 0.30 | 0.30 | | | L3a | 0.32 | 0.40 | 0.35 | | | All Dimensions in mm | | | | | ### X2-DFN1010-6 | X2-DFN1010-6 | | | | |----------------------|------|------|-------| | Dim | Min | Max | Тур | | Α | _ | 0.40 | 0.39 | | A1 | 0.00 | 0.05 | 0.02 | | А3 | _ | _ | 0.13 | | b | 0.14 | 0.20 | 0.17 | | b1 | 0.05 | 0.15 | 0.10 | | D | 0.95 | 1.05 | 1.00 | | Е | 0.95 | 1.05 | 1.00 | | е | _ | _ | 0.35 | | L | 0.35 | 0.45 | 0.40 | | K | 0.15 | _ | _ | | Z | _ | _ | 0.065 | | All Dimensions in mm | | | | # Package Outline Dimensions (continued) Please see http://www.diodes.com/package-outlines.html for the latest version. #### X2-DFN1409-6 | | X2-DFN1409-6 | | | | |----------------------|--------------|------|-------|--| | Dim | Min | Max | Тур | | | Α | - | 0.40 | 0.39 | | | A1 | 0 | 0.05 | 0.02 | | | A3 | - | - | 0.13 | | | Ø | 0.20 | 0.30 | 0.25 | | | D | 1.35 | 1.45 | 1.40 | | | Е | 0.85 | 0.95 | 0.90 | | | e1 | - | - | 0.50 | | | e2 | - | - | 0.50 | | | Z 1 | - | - | 0.075 | | | Z2 | - | - | 0.075 | | | All Dimensions in mm | | | | | #### X2-DFN1410-6 | X2-DFN1410-6 | | | | |----------------------|-------|-------|-------| | Dim | Min | Max | Тур | | Α | | 0.40 | 0.39 | | A1 | 0.00 | 0.05 | 0.02 | | А3 | | | 0.13 | | b | 0.15 | 0.25 | 0.20 | | D | 1.35 | 1.45 | 1.40 | | E | 0.95 | 1.05 | 1.00 | | е | | | 0.50 | | L | 0.25 | 0.35 | 0.30 | | Z | | | 0.10 | | Z1 | 0.045 | 0.105 | 0.075 | | All Dimensions in mm | | | | # **Suggested Pad Layout** Please see http://www.diodes.com/package-outlines.html for the latest version. #### SOT26 | Dimensions | Value (in mm) | |------------|---------------| | С | 2.40 | | C1 | 0.95 | | G | 1.60 | | Х | 0.55 | | Y | 0.80 | | Y1 | 3.20 | #### **SOT363** | Dimensions | Value
(in mm) | |------------|------------------| | С | 0.650 | | G | 1.300 | | Х | 0.420 | | Υ | 0.600 | | Y1 | 2.500 | ### X1-DFN1010-6 (Type B) | Dimensions | Value | |------------|---------| | | (in mm) | | С | 0.350 | | G | 0.150 | | G1 | 0.150 | | Х | 0.200 | | X1 | 0.900 | | Υ | 0.500 | | Y1 | 0.525 | | Y2 | 0.475 | | Y3 | 1.150 | # Suggested Pad Layout (continued) Please see http://www.diodes.com/package-outlines.html for the latest version. #### X2-DFN1010-6 | Dimensions | Value
(in mm) | |------------|------------------| | С | 0.350 | | G | 0.150 | | Х | 0.200 | | X1 | 0.900 | | Y | 0.550 | | Y1 | 1.250 | #### X2-DFN1409-6 | Dimensions | Value
(in mm) | |------------|------------------| | С | 1.000 | | C1 | 0.500 | | D | 0.300 | | G | 0.200 | | G1 | 0.200 | | Х | 0.400 | | Υ | 0.150 | #### X2-DFN1410-6 | Dimensions | Value
(in mm) | |------------|------------------| | С | 0.500 | | G | 0.250 | | Х | 0.250 | | X1 | 1.250 | | Υ | 0.525 | | Y1 | 1.250 | #### **Mechanical Data** #### SOT26 - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3) - Weight: 0.016 grams (Approximate) #### **SOT363** - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3) - Weight: 0.006 grams (Approximate) #### X1-DFN1010-6 (Type B) - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Finish NiPdAu Nickel Palladium Gold, Solderable per MIL-STD-202, Method 208 @4 - Weight: 0.001 grams (Approximate) #### X2-DFN1010-6 - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Finish NiPdAu Nickel Palladium Gold, Solderable per MIL-STD-202, Method 208 (4) - Weight: 0.001 grams (Approximate) #### X2-DFN1409-6 - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Finish NiPdAu Nickel Palladium Gold, Solderable per MIL-STD-202, Method 208 (4) - Weight: 0.002 grams (Approximate) #### X2-DFN1410-6 - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Finish NiPdAu Nickel Palladium Gold, Solderable per MIL-STD-202, Method 208 @4 - Weight: 0.002 grams (Approximate) #### **IMPORTANT NOTICE** - 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). - 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications. - 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities. - 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document. - 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. - 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application. - 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes. - 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use. - 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2023 Diodes Incorporated. All Rights Reserved. www.diodes.com 74LVC2G14 15 of 15 October 2023 Document number: DS35163 Rev. 10 - 2 www.diodes.com © 2023 Copyright Diodes Incorporated. All Rights Reserved.