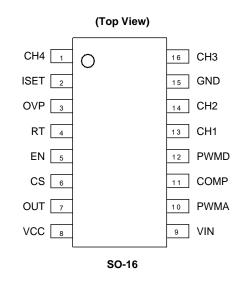


Description

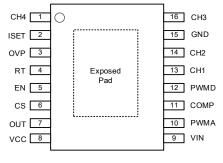
The AL3069 is a high-efficiency four-channel boost controller for WLED backlight applications. It operates over a wide input voltage range, from 4.5V to 60V.

The current of the four channels is simply programmed from 20mA to 400mA with an external resistor. The current match between any channels is $\pm 0.5\%$ (typical). Its operating frequency can be adjusted from 0.1MHz to 1MHz.

The AL3069 can support two independent dimming modes: direct PWM dimming and PWM to analog dimming. This function makes AL3069 flexible to design in different dimming applications.


Robust protection features include cycle by cycle current limit, soft-start, UVLO, programmable OVP, OTP, open/short LED protection, Schottky diode short and open protection, inductor short-circuit protection and V_{OUT} short protection.

The IC is available in SO-16 and TSSOP-16EP (Type DX) packages.


Features

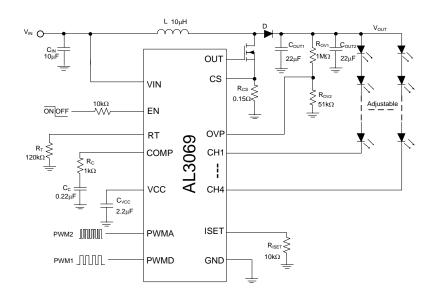
- Input Voltage Range: 4.5V to 60V
- Drivers up to Four Strings in Parallel, 250mA per String, 400mA Pulse Current
- Typical ±0.5% Current Matching
- Low Ripple for Low BOM Cost
- 4kV HBM ESD Class
- High-Voltage Pins CS and OVP for Safety Test
- Supports Direct PWM Dimming, PWM to Analog Dimming
- Minimum PWM Dimming Duty Cycle Can Be 1/5,000 at 100Hz Dimming Frequency
- LED Open/Short Protection
- Schottky Diode/Inductor Short-Circuit Protection
- Built-in OCP, OVP, OTP, UVLO, V_{OUT} Short/Schottky Diode Open Protection
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. <u>https://www.diodes.com/quality/product-definitions/</u>

Pin Assignments

TSSOP-16EP (Type DX)

Applications

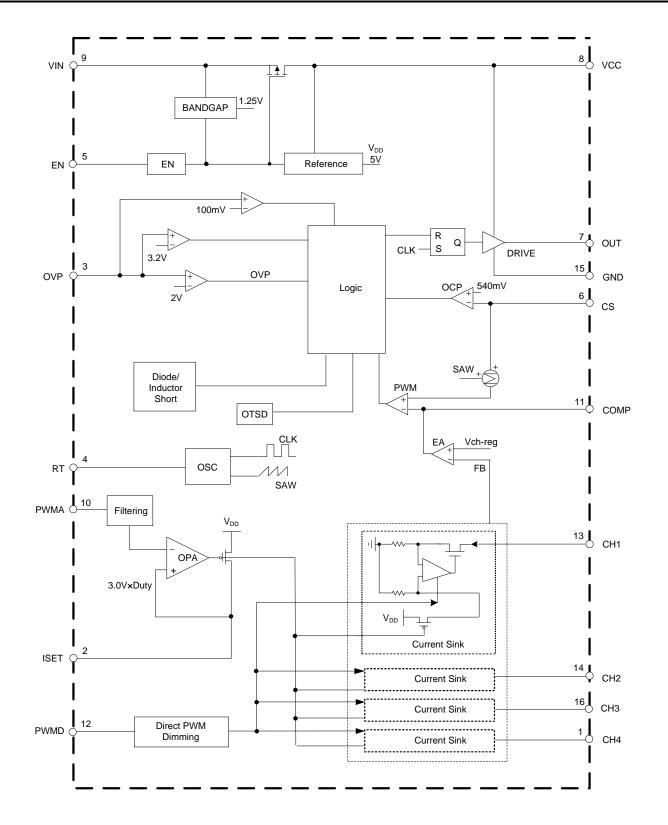
- LCD monitors
- LCD display modules
- LCD TVs


Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Applications Circuit


Pin Descriptions

Pin Number	Pin Name	Function
1	CH4	LED current sink 4. Leave the pin open directly if not used.
2	ISET	LED current set pin. The corresponding maximum current of all four strings is set through connecting a resister from this pin to GND.
3	OVP	Overvoltage protection pin. When the OVP pin voltage exceeds 2.0V, the OVP is triggered and the power switch is turned off. When the OVP pin voltage drops below Hysteresis voltage, the OVP is released and the power switch will resume normal operation.
4	RT	Frequency control pin.
5	EN	ON/OFF control pin. Forcing this pin voltage above 2.4V enables the IC while below 0.5V shuts down the IC. When the IC is in shutdown mode, all functions are disabled to reduce the supply current below 3µA.
6	CS	Power switch current sense input.
7	OUT	Boost converter power switch gate output. This pin outputs high voltage (5V) to drive the external nMOSFET.
8	VCC	5V linear regulator output pin. This pin should be bypassed to GND with a ceramic capacitor.
9	VIN	Supply input pin. A capacitor (typical 10µF) should be connected between the VIN and GND to keep the DC input voltage constant.
10	PWMA	Apply a high frequency PWM dimming signal to this pin to achieve PWM to DC dimming function.
11	COMP	Soft-start and control loop compensation.
12	PWMD	Apply a low frequency PWM signal to this pin to get directive PWM dimming function.
13	CH1	LED current sink 1. Leave the pin open directly if not used.
14	CH2	LED current sink 2. Leave the pin open directly if not used.
15	GND	Ground
16	CH3	LED current sink 3. Leave the pin open directly if not used.

AL3069

Functional Block Diagram

Symbol	Parameter		Rating	Unit
VIN	Input Voltage		-0.3 to 60	V
VEN	EN Pin Voltage		-0.3 to 7	V
Vcc	VCC Pin Voltage		-0.3 to 7	V
Vсн	CH1 to CH4 Pins Voltage		-0.3 to 80	V
Vcs	CS Pin Voltage		-0.3 to 60	V
VCOMP	COMP Pin Voltage		-0.3 to 7	V
VISET	ISET Pin Voltage		-0.3 to 7	V
Vout	OUT Pin Voltage		-0.3 to 7	V
Vovp	OVP Pin Voltage		-0.3 to 60	V
Vrt	RT Pin Voltage		-0.3 to 7	V
Vpwma	PWMA Pin Voltage		-0.3 to 7	V
VPWMD	PWMD Pin Voltage		-0.3 to 7	V
Vgnd	GND Pin Voltage		-0.3 to 0.3	V
θја	Thermal Resistance (Junction to Ambient) (Note 6)	- SO-16	85	°C/W
өлс	Thermal Resistance (Junction to Case) (Note 6)	50-16	11	°C/W
θја	Thermal Resistance (Junction to Ambient) (Note 6)	TSSOP-16EP	45	°C/W
өлс	Thermal Resistance (Junction to Case) (Note 6)	(Type DX)	10	°C/W
TJ	Operating Junction Temperature		+150	°C
Tstg	Storage Temperature		-65 to +150	°C
T _{LEAD}	Lead Temperature (Soldering, 10sec)		+260	°C
_	ESD (Charge Device Model, CDM)		1000	V
_	ESD (Human Body Model, HBM)		4000	V

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.) (Notes 4, 5)

Notes: 4. Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability.

5. For better performance, the AL3069 should have high voltage pins CS and OVP. If CS or OVP pin is added to 16V, the IC will not smoke or burn. 6. Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad layout.

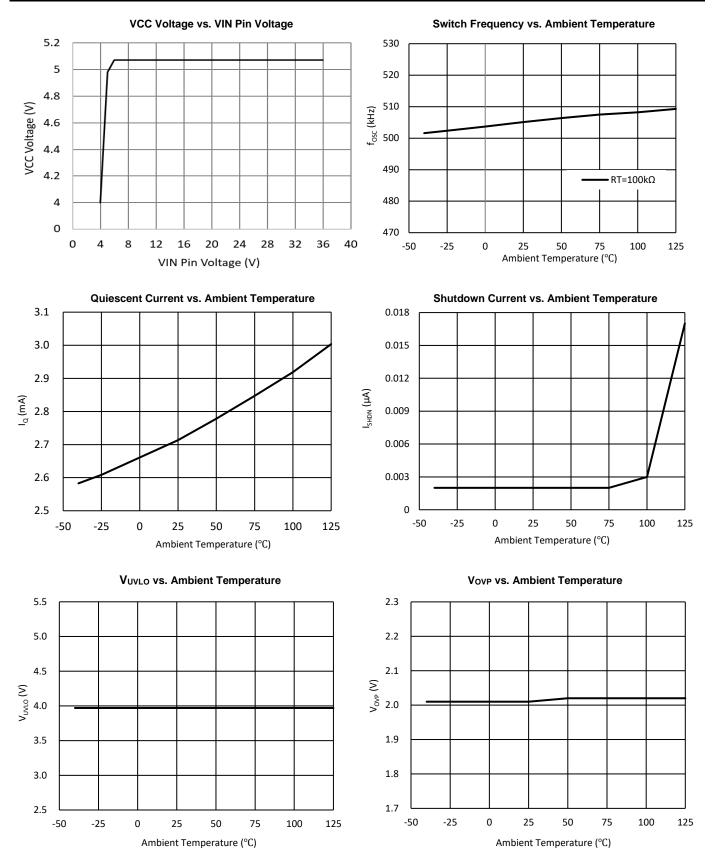
Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
Vin	Input Voltage	4.5	60	V
fsw	Operating Switching Frequency	0.1	1	MHz
ICH	LED Channel Current	20	400	mA
fpwmd	Direct PWM Dimming Frequency	0.1	2	kHz
fрwma	PWM to Analog Dimming Frequency	5	100	kHz
TA	Operating Ambient Temperature	-40	+85	°C

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Input Supply						1
Vin	Input Voltage	_	4.5	_	60	V
lq	Quiescent Current	No Switching	_	3	_	mA
ISHDN	Shutdown Supply Current	$V_{EN} = 0V$	_	1	_	μA
Vuvlo	Undervoltage Lockout Voltage	V _{IN} Rising	3.7	4.0	4.3	V
VHYS	UVLO Hysteresis	—	_	200	_	mV
Vcc Regulator	·					
		V _{IN} ≥5.5V	—	5	_	V
Vcc	Vcc Voltage	VIN < 5.5V	_	VIN-0.5	_	V
trise	OUT Pin Rise Time	OUT Pin Load = 1nF	_	30	_	ns
t FALL	OUT Pin Fall Time	OUT Pin Load = 1nF	_	30	_	ns
_	Load Regulation	Load = 0 to 30mA	_	5	_	mV/mA
	Line Regulation	V _{IN} = 12V to 33V	_	0.3		mV/V
High Frequency	Oscillator					
fosc1	Switch Frequency	R _T = 100kΩ	_	500	_	kHz
	Switch Frequency Range	_	0.1	_	1	MHz
DMAX	Max. Duty Cycle	R _T = 100kΩ	80	90	_	%
ton_time	Minimum On-time	_	_	100	_	ns
Enable Logic and	d Dimming Logic					1
V _{EN_H}	EN High Voltage	_	2.4	_	_	V
Ven_L	EN Low Voltage	_	_	_	0.5	V
Vpwma_h		_	2.5	_	_	V
Vpwma_l	PWM Logic for External Dimming	_	_	_	0.3	V
Vpwmd_h		_	2.5	_	_	V
Vpwmd_l	PWM Logic for External Dimming	_	_	_	0.3	V
Power Switch Dr	ive					
VLIMIT	Current Limit Threshold Voltage	_	480	540	600	mV
V _{LIMIT2}	D/L Short Threshold Voltage	_	720	800	880	mV
t LEB	Current Sense LEB Time (Note 7)	_	80	100	150	ns
Compensation a	nd Soft-Start (COMP Pin)	1				•
Io_H	Sourcing Current	$V_{COMP} = 0.5V$	_	120	_	μA
lo_L	Sinking Current	VCOMP = 2V	_	120	_	μA

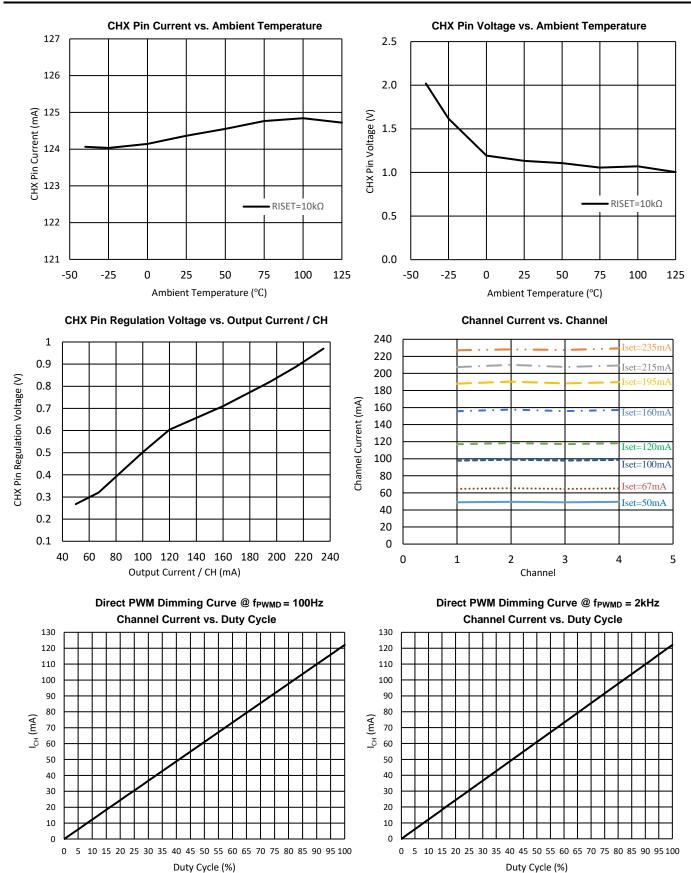
Electrical Characteristics (@T_A = +25°C, V_{IN} = 12V, V_{EN} = 5V, unless otherwise specified.)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Overvoltage Prot	ection					
Vovp	OVP Threshold Voltage	Vout Rising	1.9	2.0	2.1	V
Vovp_hys	OVP Hysteresis	_	_	200	_	mV
Vovp_sh	Shutdown Under Abnormal Condition	_	3.0	3.2	3.4	V
Current Source						
Існ	Regulation Current per Channel	$R_{ISET} = 21.8k\Omega$	52.3	55	57.7	mA
Існ_матсн	LED Current Matching Between Each String (Note 8)	I _{CH} = 55mA Analog Dimming PWM Duty Cycle =100%	_	0.5	1	%
Існ	Regulation Current per Channel	Analog Dimming	4	5.5	7	mA
Існ_матсн	LED Current Matching Between Each String (Note 8)	PWM Duty Cycle = 10%	-0.1	1.5	5	%
VLED_REG	Minimum LED Regulation Voltage	Iсн = 120mA		500	—	mV
ILED_LEAK	CH1 to CH4 Leakage Current	$V_{EN} = 0V$, $V_{LED} = 37V$		0.1	1	μA
VLED_S	LED Short Protection Threshold	-	8.0	8.7	9.5	V
Overtemperature	Protection					
Totsd	Thermal Shutdown Temperature (Note 7)	—	+155	+160	+165	°C
T _{HYS}	Thermal Shutdown Temperature Hysteresis (Note 7)	—	_	+30	_	°C

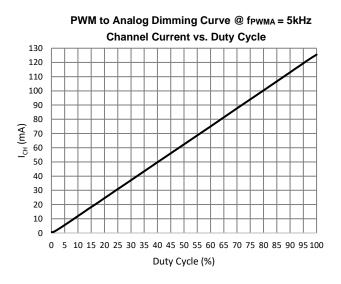

Electrical Characteristics (continued) (@T_A = +25°C, V_{IN} = 12V, V_{EN} = 5V, unless otherwise specified.)

Notes: 7. Guaranteed by Design.

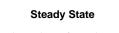
8.
$$I_{CH_{-MATCH}} = \frac{I_{MAX} - I_{MIN}}{2 \times I_{AVG}} \times 100\%$$

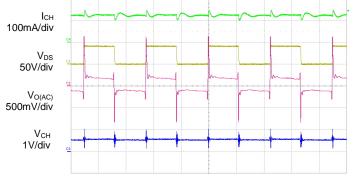


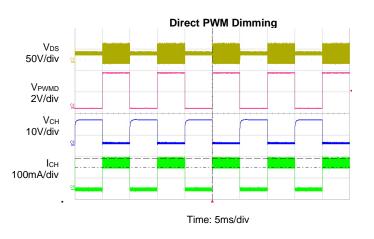
Performance Characteristic ($@T_A = +25^{\circ}C$, $V_{IN} = 12V$, $V_{EN} = 5V$, unless otherwise specified.)

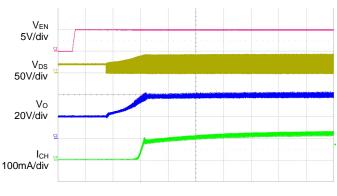


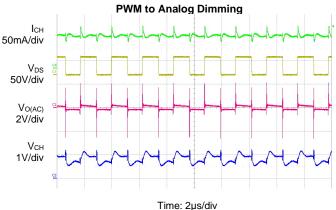
Performance Characteristic (continued) (@T_A = +25°C, V_{IN} = 20V, V_{EN} = 5V, unless otherwise specified.)




Performance Characteristic (continued) (@T_A = +25°C, V_{IN} = 20V, V_{EN} = 5V, unless otherwise specified.)


PWM to Analog Dimming Curve @ $f_{PWMA} = 100 kHz$

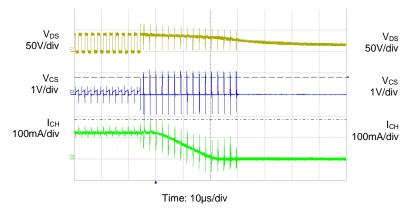


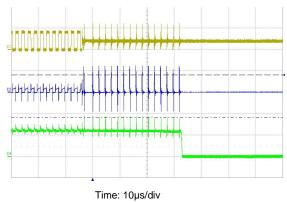

Time: 1µs/div

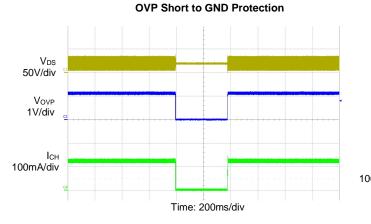
System Startup

Time: 1ms/div

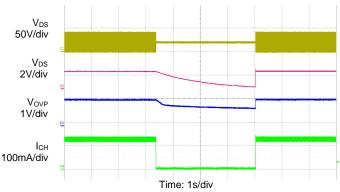
Performance Characteristic (continued) (@T_A = +25°C, V_{IN} = 20V, V_{EN} = 5V, unless otherwise specified.)




V_{DS} 50V/div VCOMP 2V/div Vovp 2V/div I_{CH} 100mA/div


LED Open Protection

Time: 5ms/div



Overtemperature Protection

Inductor Short Protection

Enable

The AL3069 is enabled when the voltage at EN pin is greater than approximately 2.4V, and disabled when lower than 0.5V.

Frequency Selection

An external resistor R_T, placed between RT pin and GND, can be used to set the operating frequency. The operating frequency ranges from 100kHz to 1MHz. The high frequency operation optimizes the regulator for the smallest-sized component application, while low frequency operation can help to reduce switch loss. The approximate operating frequency can be expressed as below:

$$f_{osc}[MHz] = \frac{52}{R_T[k\Omega]}$$

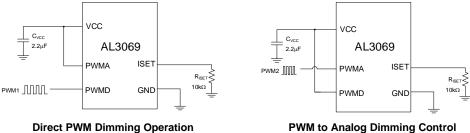
LED Current Setting

The maximum LED current per channel can be adjusted up to 400mA via ISET pin. When ≥ 400mA current is needed in application, two or more channels can be paralleled to provide larger drive current. A resistor RISET is connected between ISET pin and GND to set the reference current ISET. The LED current can be expressed as below:

$$I_{LED}[mA] = \frac{1200}{R_{ISET}[k\Omega]}$$

Dimming Control

1) Direct PWM Dimming Control


Compared to analog dimming, PWM dimming offers superior dimming resolution and reduced LED color shift. Connect PWMA to VCC and supply PWM dimming signal on PWMD pin to achieve directive PWM dimming operation. The LED current of all enabled channels can be adjusted at the same time and the LED brightness can be adjusted from 1%×IcH MAX to 100%×IcH MAX.

During the "high level" period of PWM signal, the LED is turned on, while during the "low level" period of the PWM signal, the LED is turned off and almost no current flows through the LED. Changing the average current through the LED can adjust the LED brightness.

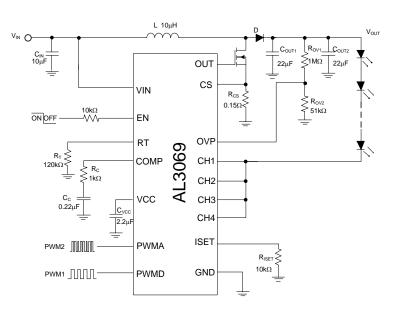
The external PWM signal frequency applied to PWMD pin can be 100Hz or higher and the minimum duty PWM duty can be 1/5000 at 100Hz dimming frequency.

2) PWM to Analog Dimming Control

The IC provides PWM to analog dimming function performed by tying a high frequency PWM signal on PWMA pin and connecting PWMD pin to VCC pin. The internal filter block smooths input 0% to 100% PWM signal to a 0.09 to 3VDC signal which modulates the LED current amplitude. To get better smoothing effect, PWM frequency should be higher than 5kHz.

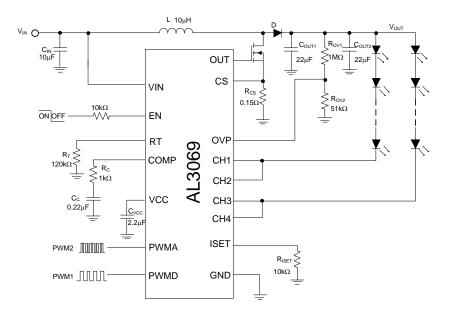
PWM to Analog Dimming Control

1- to 3-Channel Recommended Connections


For applications using fewer than four LED strings, one option is to leave the unused channels open. However, LED open-circuit protection is triggered at each startup to disable the unused channels.

To avoid LED open-circuit protection at each startup, use the following recommended connections.

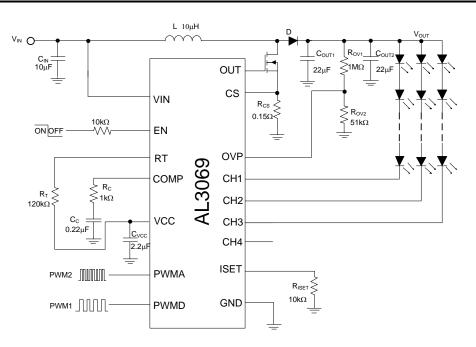
For applications using only one LED string, all four channels must be tied together, and the current setting for each channel is one quarter of the desired output current.



Application Information (continued)

One Channel Recommended Connection

For applications using two LED strings, every two channels must be tied together (CH1 & CH2, CH3 & CH4), and the current setting for each channel is half of the desired output current of each LED string.



Two Channels Recommended Connection

For applications using three LED strings, the AL3069 provides design flexibility by disabling the fourth channel, CH4 opened. A resistor RT is required to be connected between RT pin and VCC pin instead of connecting between RT pin and GND pin. The three LED strings must be connected to CH1, CH2, and CH3 correspondingly.

Application Information (continued)

Three Channels Recommended Connection

Protection

1) Overvoltage Protection

The AL3069 integrates an OVP circuit. The OVP pin is connected to the center tap of voltage-divider (Rov1 and Rov2) connected between high voltage output and GND.

If the voltage at OVP pin exceeds 2.0V, which may result from open loop or excessive output voltage, all the functions of the AL3069 will be disabled with output voltage falling. The OVP hysteresis is 200mV.

2) Overcurrent Protection

The AL3069 integrates an OCP circuit. The CS pin is connected to the voltage-sensor (RCS) placed between the source of the MOSFET and GND. If the voltage at CS pin exceeds 0.54V, the MOSFET is turned off immediately and will not turn on until the next cycle begins.

3) LED Short-Circuit Protection

The AL3069 integrates an LED short-circuit protection circuit. If the voltage at any of the CH1 to CH4 pins exceeds a threshold of approximately 8.7V and 7 μ s delay time during normal operation, the corresponding channel is latched off. Toggle V_{IN} or EN to reset the latch. LED short detecting logic priority is lower than open LED and OVP logic. The LED short detecting is triggered when 0.1V < V_{LED_MIN} under dimming on mode, and disabled when LED open occurs until output voltage resumes to the regulated voltage.

4) LED Open-Circuit Protection

The AL3069 integrates an LED open-circuit protection circuit. When any LED string is open, V_{OUT} will boost up until the voltage at OVP pin reaches an approximate threshold of 2.0V. The IC will automatically ignore the open string whose corresponding pin voltage is less than 100mV and the remaining string will continue operation. If all the strings are open and the voltage at OVP pin reaches a threshold of 2.0V, the MOSFET drive gate will turn off and the IC will shut down and latch.

5) VOUT Short/Open Schottky Diode Protection

The AL3069 monitors the OVP pin. If the OVP pin voltage is less than 0.1V, MOSFET drive output will turn off. This protects the converter if the output Schottky diode is open or V_{OUT} is shorted to ground.

Application Information (continued)

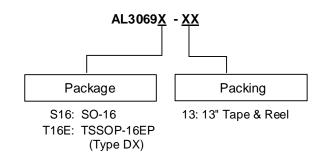
6) Undervoltage Lockout

The AL3069 provides an undervoltage lockout circuit to prevent it from undefined status when it starts up. The UVLO circuit shuts down the device when V_{CC} drops below 3.8V. The UVLO circuit has 200mV hysteresis, which means the device starts up again when V_{CC} rises to 4.0V.

7) Overtemperature Protection

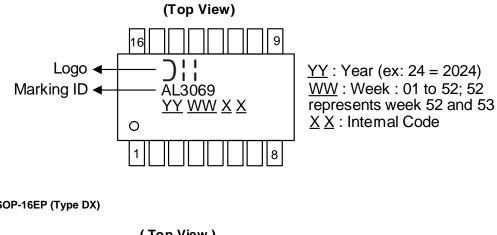
The AL3069 features overtemperature protection. If the junction temperature exceeds approximately +160°C, the IC will shut down until the junction temperature is less than approximately +140°C. When the IC is released from overtemperature shutdown, it will start a soft-start process.

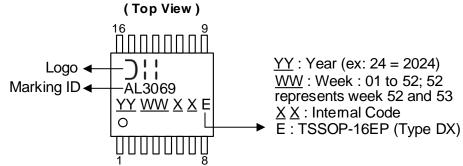
8) Schottky Diode/Inductor Short-Circuit Protection


The AL3069 features Schottky diode/inductor short-circuit protection circuit. When CS pin voltage exceeds 0.8V for greater than 16 switching clocks, the IC will latch off. The voltage of CS pin is monitored after a short delay of t_{LEB}.

9) Shutdown under Abnormal Condition

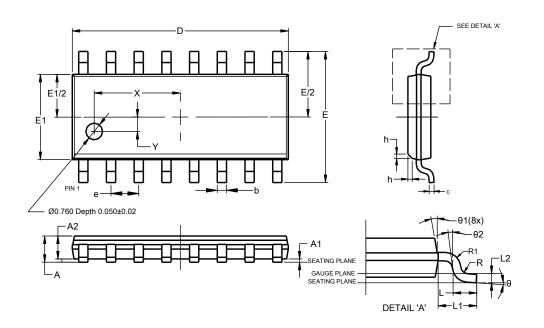
The AL3069 features shutdown under abnormal condition protection circuit. When the OVP pin voltage exceeds 3.2V, the IC will latch off. Toggle EN pin to restart the IC. This feature can be used to shut down the IC under any defined abnormal condition.


Ordering Information


Part Number	Part Number Part Number Suffix Package Code Package		Dent Number Cuffin	Pac	king
Part Number	Part Number Sumx	Package Code	Package	Qty.	Carrier
AL3069S16-13	-13	S16	SO-16	2500	Tape & Reel
AL3069T16E-13	-13	T16E	TSSOP-16EP (Type DX)	2500	Tape & Reel

Marking Information

Package Type: SO-16


Package Type: TSSOP-16EP (Type DX)

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

	SO-16							
Dim	Min	Min Max Typ						
Α		1.260						
A1	0.10	0.23						
A2	1.02		-					
b	0.31	0.51	-					
С	0.10	0.25						
D	9.80	10.00	-					
E	5.90	6.10						
E1	3.80	4.00						
е	1.27 BSC							
h	0.15	0.25	0.20					
L	0.40	1.27						
L1	1	.04 RE	F					
L2	C).25 BS(2					
R	0.07							
R1	0.07							
Х	3.	945 RE	F					
Y	0	.661 RE	F					
θ	0°	8°						
θ1	5°	15°						
θ2	0°							
All	Dimens	ions in	mm					

Тур

--

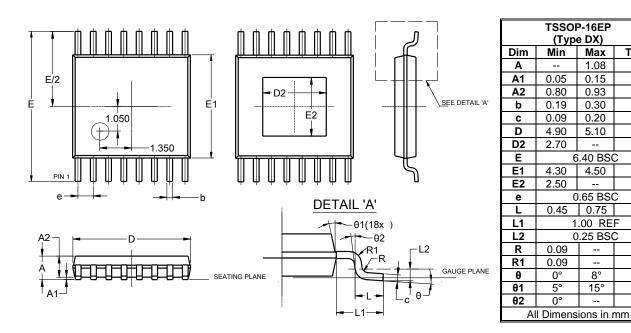
--

--

--

--

--

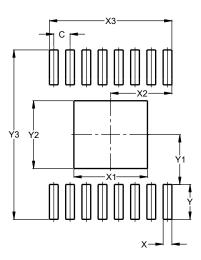


TSSOP-16EP (Type DX)

SO-16

AL3069

Suggested Pad Layout


Please see http://www.diodes.com/package-outlines.html for the latest version.

•		,	<1		
Y1 -					

Dimensions	Value (in mm)
С	1.270
Х	0.670
X1	9.560
Y	1.450
Y1	6.400

TSSOP-16EP (Type DX)

Mechanical Data

SO-16

- Moisture Sensitivity: Level 1 per JESD22-A113
- Terminals: Finish Matte Tin Plated Leads, Solderable per M2003 JESD22-B102 (3)
- Weight: 0.1298 grams (Approximate)

TSSOP-16EP (Type DX)

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per JESD22-B102 (3)
- Weight: 0.055 grams (Approximate)

Dimensions	Value	
Dimensions	(in mm)	
С	0.65	
Х	0.35	
X1	2.94	
X2	2.45	
X3	4.90	
Y	1.40	
Y1	2.00	
Y2	2.72	
Y3	6.80	

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (<u>https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/</u>) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com