

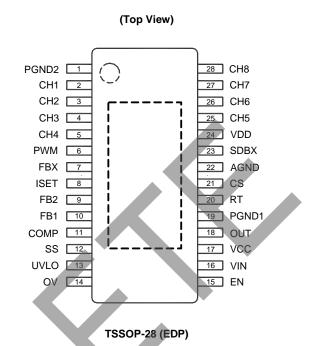
AP3068

Description

The AP3068 is a white LED (WLED) driver with current balancing and dimming functions. It consists of a boost controller and 8-channel current sinks to drive WLED arrays with constant current from a wide power supply range. It can be used in middle and large-sized LCD panel backlight.

The full-scale LED current can be adjusted from 5mA to 100mA simply via a resistor. The 8 channels can be paralleled for higher current application. The AP3068 can support direct PWM dimming.

The AP3068 features LED open/short protection, Under Voltage Lockout (UVLO) protection, over output voltage protection and Over Temperature Protection (OTP).

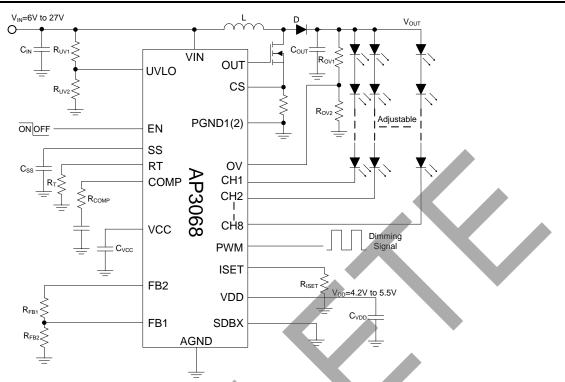

The AP3068 is available in TSSOP-28 (EDP) package.

Features

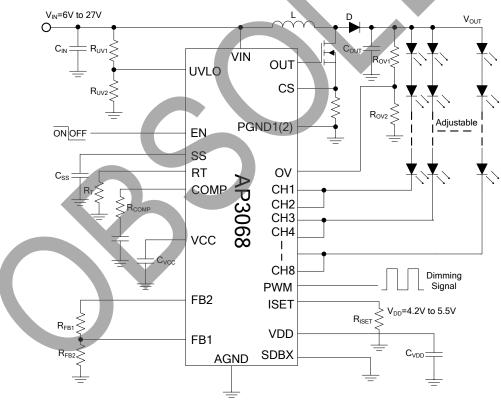
- Input Voltage Range: 6V to 27V
- Maximum Duty Cycle: 93%
- Maximum Channel Current: 100mA
- Current Matching Accuracy: ±1.5%
- Adjustable Operating Frequency: 200kHz to
- 1MHz
- Cycle-by-cycle Current Limit
- Unused LED Channel Auto-detection
- Open/Short LED Protection
- Programmable Soft-start
- Programmable UVLO Protection
- Programmable OVP
- Over Temperature Protection
- FBX and SDBX Pins Enable Parallel
- Application with AP3608E

WHITE LED DRIVER FOR LCD PANEL BACKLIGHT

Pin Assignments



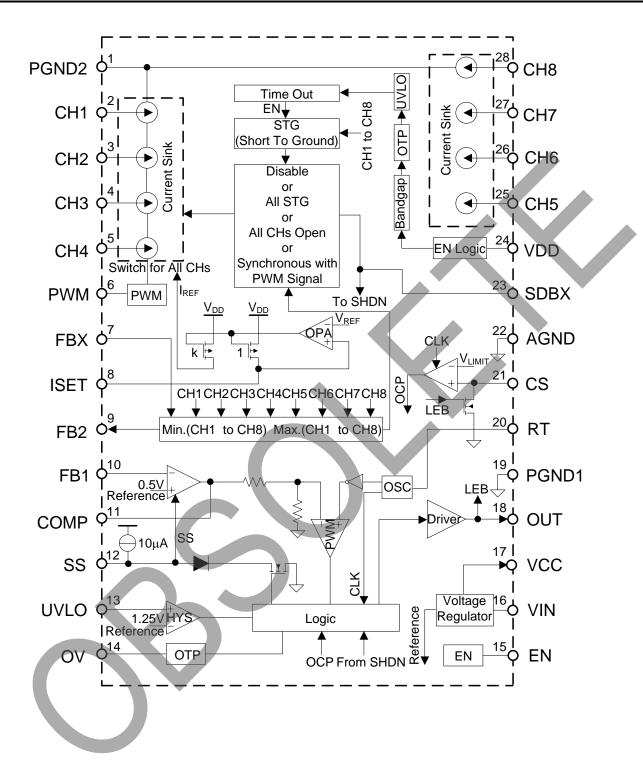
Applications


- LCD Monitor
- LCD Display Module
- LCD TV

Typical Applications Circuit

Typical Application Circuit of AP3068 (Single Channel Application)

Typical Application Circuit of AP3068 (Paralleled Channel Application)



Pin Descriptions

Pin Number	Pin Name	Function	
1	PGND2	Power ground pin of current sink section	
2,3,4,5, 25,26,27,28	CH1 to CH8	White LED cathode connection pin. The current of each channel can be set from 5mA to 100mA. The channels can be paralleled for higher current application. These pins should be connected to GND if not used	
6	PWM	PWM dimming control pin. Add a PWM signal to this pin to realize PWM dimming control	
7	FBX	This pin is an interface terminal. Connect it with current sink device for parallel application. Leave it unconnected if not used	
8	ISET	LED current setting pin. An external resistor can be connected to this pin to set LED current, the full-scale current can be adjusted from 5mA to100mA	
9	FB2	Feedback pin. This pin is an interface terminal, which samples the voltage of each channel, and outputs the lowest voltage to DC/DC controller	
10	FB1	Voltage feedback pin of the boost controller section. The reference voltage is 500mV	
11	COMP	Boost controller compensation pin. This pin is the output of internal error amplifier	
12	SS	Soft-start time control pin. An external soft-start time capacitor is placed between this pin and AGND, and is charged by an internal 12µA current source to control the soft-start time of regulator	
13	UVLO	Under voltage lockout sense pin. The start-up and shutdown level can be set via two resistors respectively connected from this pin to AGND and VIN pin	
14	OV	Over voltage sense pin	
15	EN	Enable pin. Logic high enables the IC, while logic low disables the IC	
16	VIN	Input supply pin of boost controller section. This pin must be locally bypassed. The input voltage ranges from 6V to 27V	
17	VCC	6 V linear regulator output pin. It is used to bias the gate driver for external MOSFET. If V _{IN} is less than 8.5V, V _{CC} is equal to V _{IN} minus dropout voltage across the bypass switch (V _{DROP}), in other words, V _{CC} =V _{IN} -V _{DROP} . This pin should be bypassed to GND (recommended to be connected to AGND pin) with a ceramic capacitor	
18	OUT	External MOSFET gate driver output pin. The gate driver has 0.6A peak current capability	
19	PGND1	Power ground pin of the boost controller section	
20	RT	Frequency control pin. The operating frequency can be set via an external resistor placed between this pin and AGND	
21	CS	Switch current sense pin. It is used for current mode control and current limit	
22	AGND	Analog ground pin	
23	SDBX	This pin is an interface terminal. Connect it with current sink device for parallel application. It should be connected to GND if not used	
24	VDD	Input supply pin for current sink section. The input voltage ranges from 4.2V to 5.5V	

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Value	Unit	
V _{IN}	Input Voltage	30	V	
V _{DX}	CH1 to CH8 Voltage (Note 2)	-0.3 to 40	V	
V _{EN}	EN Pin Voltage	-0.3 to 30	V	
V _{DD}	VDD Pin Voltage	-0.3 to 6	V	
V _{ISET}	ISET Pin Voltage	-0.3 to 6	V	
V _{PWM}	PWM Pin Voltage	-0.3 to 6	V	
VCOMP	COMP Pin Voltage	-0.3 to 6	V	
V _{SS}	SS Pin Voltage	-0.3 to 6	V	
V _{UVLO}	UVLO Pin Voltage	-0.3 to 7	V	
V _{VCC}	VCC Pin Voltage	-0.3 to 10	V	
Vout	OUT Pin Voltage	-0.3 to 10	V	
Vcs	CS Pin Voltage	-0.3 to 7	V	
V _{RT}	RT Pin Voltage	-0.3 to 7	V	
V _{OV}	OV Pin Voltage	-0.3 to 7	V	
TJ	Operating Junction Temperature	+150	°C	
T _{STG}	Storage Temperature	-65 to +150	°C	
T _{LEAD}	Lead Temperature (Soldering, 10 sec)	+260	°C	
_	ESD (Machine Model)	200	V	
_	ESD (Human Body Model)	2000	V	

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and Notes: functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

2. Breakdown Voltage.

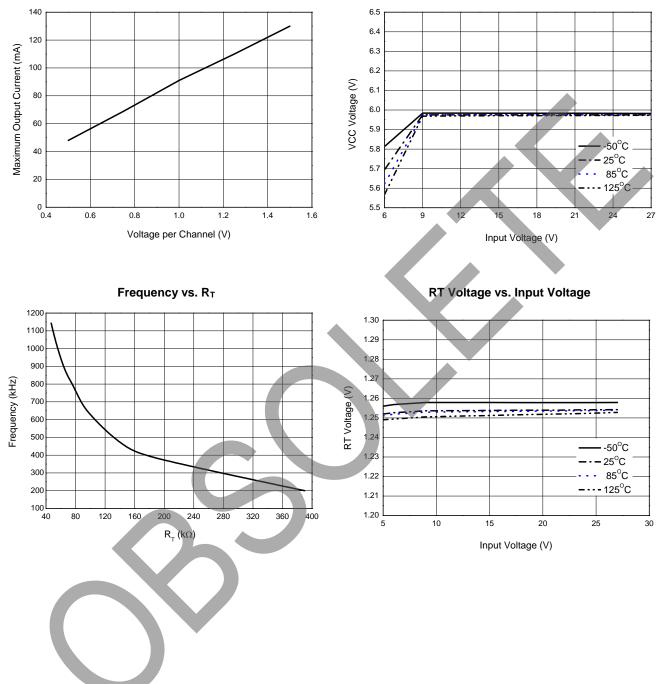
Recommended Operating Conditions

Symbol	Parameter	Min	Мах	Unit
V _{IN}	Input Voltage 1	6	27	V
V _{DD}	Input Voltage 2	4.2	5.5	V
fo	Operating Frequency	0.2	1	MHz
I _{СНХ}	LED Channel Current	5	100	mA
f _{PWM}	PWM Dimming Frequency	0.1	25	kHz
T _A	Operating Temperature	-40	+85	°C

Electrical Characteristics (VIN =12V, VDD=5V, TA=+25°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
INPUT SECTIO	INPUT SECTION						
VIN	Input Voltage	_	6	_	27	V	
lq	Quiescent Current	No Switching	_	3	5	mA	
I _{SHTD}	Shutdown Supply Current	V _{EN} =V _{DD} =0V	_	1	2	μA	
V _{UVLO}	VIN UVLO Threshold	Rising Edge	1.22	1.25	1.28	V	
I _{HYS}	VIN UVLO Hysteresis Current Source	-	16	20	24	μA	
VCC SECTION						L	
	VCC Voltage	6V≤V _{IN} ≤9V	5	-	-	V	
Vcc	VCC Vollage	9V≤V _{IN} ≤27V	5.5	6	6.5	V	
IVCC_LIM	VCC Current Limit	-	-	50	_	mA	
V _{DROP}	Dropout Voltage Across Bypass Switch	I _{CC} =0mA, f _{OSC} ≤400kHz, 6V≤V _{IN} ≤8.5V	-	300	_	mV	
V _{BYP_HI}	Bypass Switch Turn-off Threshold	V _{IN} Rising	-	8.7	_	V	
VBYP_HYS	Bypass Switch Threshold Hysteresis	V _{IN} Falling		260	-	mV	
Vcc_uvlo	VCC UVLO Threshold	Rising Edge		4.7	_	V	
V _{CC_HYS}	VCC UVLO Hysteresis	-	-	300	_	mV	
BOOST CONT	ROLLER SECTION					L	
V _{RT}	RT Voltage	_	1.20	1.25	1.30	V	
fo	Operating Frequency	Adjustable	0.2	-	1	MHz	
Ям	Error Amplifier Transconductance		-	470	-	µA/V	
R _O	Error Amplifier Output Resistance		-	1	_	Ω	
V _{CS}	Current Limit Threshold Voltage	_	0.09	0.11	0.13	V	
D _{MAX}	Maximum Duty Cycle	-	90	93	_	%	
I _{SS}	Soft-start Current Source	-	_	12	_	μΑ	
trising	OUT Pin Rising Time	1nF Load	_	20	_	ns	
tFALLING	OUT Pin Falling Time	1nF Load	-	20	-	ns	
V _{OUT_H}	Output High Voltage Level (V _{CC} -V _{OUT})	I _{OUT} =50mA	-	0.25	0.75	V	
V _{OUT_L}	Output Low Voltage Level	I _{OUT} =100mA	_	0.25	0.75	V	
Vov	OV Threshold	-	_	1.25	-	V	
I _{OV_HYS}	OV Hysteresis Current Source	_	16	20	24	μA	

Electrical Characteristics (Cont. VIN =12V, VDD=5V, TA=+25°C, unless otherwise specified.)


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
URRENT SIN	IK SECTION			1	1	
V _{DD}	Input Voltage	_	4.2	_	5.5	V
lQ	Quiescent Current	No Load	_	0.5	1	mA
VISET	ISET Reference Voltage	_	1.17	1.194	1.218	V
k	Output/ISET Current Multiplication Ratio	_	370	400	430	_
		V _{CHX} =0.5V	23	45	-	
I _{CHX-MAX}	Maximum Output Current per Channel	V _{CHX} =1V	65	70	_	mA
		V _{CHX} =1.5V	110	120	-	
I _{CH-MATCH}	Current Matching Accuracy Between Each Channel	I _{CHX} =60mA V _{CHX} =1V	-1.5	-	1.5	%
		I _{CHX} =20mA	_	-	0.45	
V _{CHX}	Current Sink Saturation Voltage per Channel	I _{CHX} =60mA		-	0.8	V
		I _{CHX} =100mA	_	-	1.2	
ΔI _{CH} / (I _{CH} ×ΔV _{DD})	Output Current Line Regulation	V _{DD} =4.2V to 5.5V	-	-	2	%/\
_	Output Current Load Regulation	V _{CHX} =0.5V to 2.8V		_	4	%
Vd_open	LED Open Detecting Voltage	-	-	3	_	V
ENABLE AND	PWM DIMMING SECTION			•		
V_{IH_EN}	EN High Level Threshold Voltage	-	2.0	_	_	V
$V_{\text{IL}_{\text{EN}}}$	EN Low Level Threshold Voltage		_	_	0.5	V
V _{IH_PWM}	PWM High Level Threshold Voltage	-	1.8	_	_	V
VIL_PWM	PWM Low Level Threshold Voltage	-	_	_	0.8	V
fрwм	PWM Dimming Frequency	-	0.1	_	25	kHz
D _{PWM_MIN}	Minimum PWM Duty Cycle	_	0.35	_	_	%
TOTAL DEVIC	E		•	1	L	
T _{OTSD}	Thermal Shutdown Temperature	_	-	+160	-	°C
T _{HYS}	Thermal Shutdown Hysteresis	_	_	+20	_	°C

$\label{eq:performance Characteristics (V_{IN} = 12V, V_{EN} = V_{DD} = 5V, R_{IEST} = 20 k \Omega, T_{A} = +25^{\circ} C, unless otherwise specified.)$

Maximum Output Current vs. Voltage per Channel

VCC Voltage vs. Input Voltage

Application Information

1. Input Under-voltage Detector

The AP3068 integrates an UVLO circuit. Two resistors R_{UV1} and R_{UV2} are respectively connected from UVLO pin to GND and VIN pin. The resistor divider (R_{UV1} and R_{UV2}) must be designed such that the voltage on UVLO pin is higher than 1.25V when V_{IN} is in the desired operating range. If the voltage on UVLO pin is below the under voltage threshold, all functions of AP3068 will be disabled, while the system will remain in a low-power standby state. The UVLO hysteresis is realized through an internal 22µA current source, which switched on or off 22µA current flowed into the set-point divider. The current source will be instantly activated to raise the voltage on the UVLO pin (V_{UVLO}) when the UVLO threshold (T_{UVLO}) is exceeded, and will be turned off to lower V_{UVLO} when V_{UVLO} falls below T_{UVLO} . The formulas of UVLO can be expressed as blow:

$$V_{\text{IN_THRESHOLD}} = \frac{(R_{\text{UV1}} + R_{\text{UV2}}) \times 1.25V}{R_{\text{UV2}}} \qquad V_{\text{IN_HYSTERESIS}} = R_{\text{UV1}} \times 22\mu\text{A}$$

Where $V_{IN_THRESHOLD}$ is the input threshold voltage and $V_{IN_HYSTERESIS}$ is the input hysteresis voltage.

2. Over Voltage Protection

The AP3068 integrates an OVP circuit. The OV pin is connected to the center tap of voltage-divider (R_{OV1} and R_{OV2}) that placed between high voltage output and GND. If the voltage on OV pin exceeds 1.25V, which may results from open loop or excessive output voltage, all the functions of AP3068 will be disabled with output voltage falling. The OVP hysteresis is realized by an internal 22µA current source and its operation mode behaves the same as UVLO. The formulas of OVP can be expressed as blow:

22 uA

$$V_{OVP} = \frac{(R_{OV1} + R_{OV2}) \times 1.25V}{R_{OV2}} \qquad V_{OVP_HYSTERESIS} = R_{OV1} \times 1.25V$$

Where VOVP is the OVP voltage and VOVP_HYSTERESIS is the OVP hysteresis voltage.

3. Frequency Selection

An external resistor R_T , placed between RT pin and GND, can be used to set the operating frequency. The operating frequency ranges from 200kHz to 1MHz. The high frequency operation optimizes the regulator for the smallest-sized component application, while low frequency operation can help to reduce switch loss.

R _T (kΩ)	Operating Frequency (kHz)
390	200
147	400
95	600
68	800
51	1000

4. Soft-start

The AP3068 integrates a soft-start circuit to limit the inrush current during start-up. The time of soft-start can be controlled by an internal 12μ A current source and an external soft-start capacitor C_{SS} placed between SS pin and GND. The effective C_{SS} voltage for soft-start ranges from 0V to 2.3V, and the time of soft-start can be expressed as below:

$$t_{ss} = \frac{C_{ss} \times 2.3V}{12\mu A}$$

Where t_{SS} is the time of soft-start.

Application Information (Cont.)

5. VCC Pin Application Description

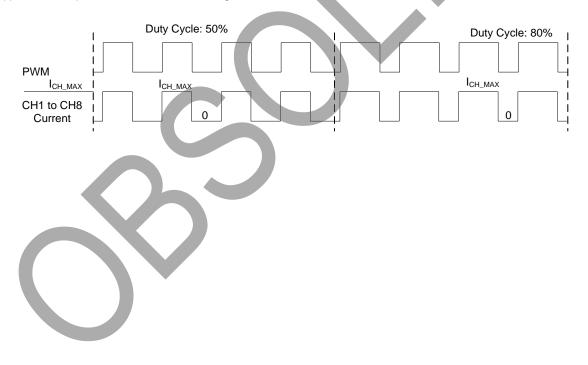
The AP3068 includes an internal low-dropout linear regulator with an output pin VCC. This pin is used to power the internal PWM controller, control logic and MOSFET driver. On condition that V_{IN}≥8.5V, the regulator will generate a 6V supply; On condition that 6V≤V_{IN}≤8.5V, V_{CC} is equal to V_{IN} minus dropout voltage across bypass switch (V_{DROP}), in other words, V_{CC}=V_{IN}-V_{DROP}; On condition that V_{IN}≤6V, connect VCC pin to VIN pin directly.

6. LED Current Setting

The maximum LED current per channel can be adjusted up to 100mA via ISET pin. When ≥100mA current is needed in application, two or more channels can be paralleled to provide larger drive current. Connect a resistor RISET between ISET pin and GND to set the reference current ISET. and ISET can be expressed as below:

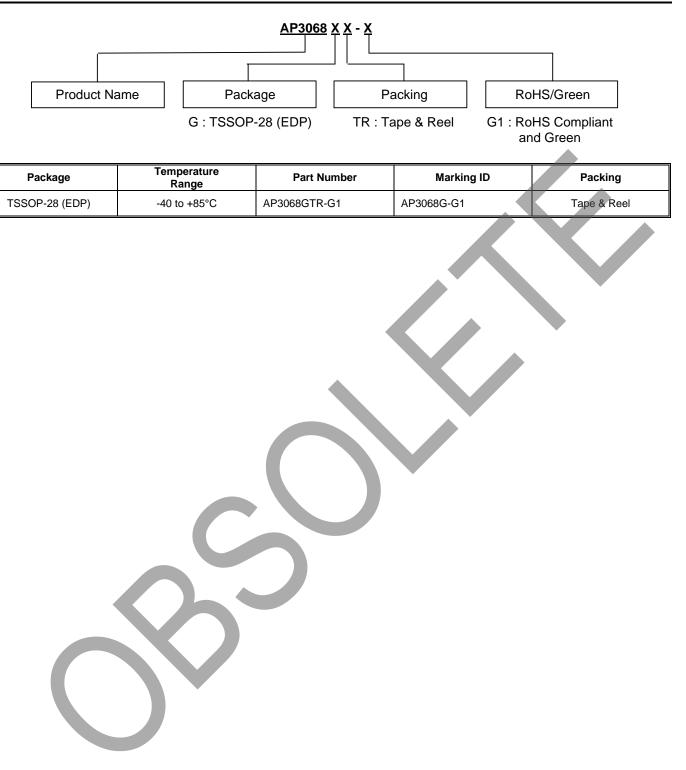
$$I_{\text{SET}} = \frac{1.194V}{P}$$

K_{ISET}

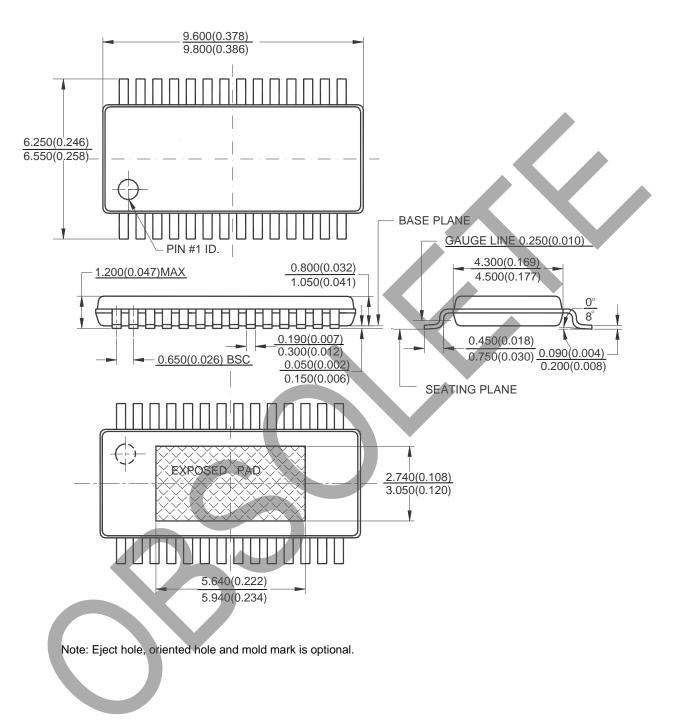

This reference current is multiplied internally with a gain (k) of 400, and then be mirrored onto all enabled channels, which can set the maximum LED current, referred to as 100% current (I_{CHX_MAX}). And I_{CHX_MAX} can be expressed as below:

 $I_{CHX MAX} = k \times I_{SET}$

The LED current can be reduced from 100% by PWM dimming control.


7. PWM Dimming Mode

Applying a PWM signal to PWM pin to adjust the LED current, that means, the LED current of all enabled channels can be adjusted at the same time and the LED brightness can be adjusted from 1%x I_{CHX_MAX} to 100%xI_{CHX_MAX}. During the "high level" period of PWM signal, the LED is turned on and 100% of the current flows through LED, while during the "low level" period of the PWM signal, the LED is turned off and almost no current flows through the LED, thus changing the average current through LED and finally adjusting LED brightness. The external PWM signal frequency applied to PWM pin is allowed to be 100Hz or higher.


Ordering Information

Package Outline Dimensions (All dimensions in mm(inch).)

(1) Package Type: TSSOP-28 (EDP)

AP3068

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com