

Features

CV/CC Control Circuitry

Short Circuit Protection

Low Total Cost Solution Output Power Range (Note 1):

Built-in NPN Transistor with 700VCBO Low Start-up Current: 0.2µA (Typ.)

AP3968 for 5W Adapter

AP3969 for 7.5W Adapter

AP3970 for 12W Adapter

Internal Output Cable Voltage Drop Compensation

Totally Lead-free & Fully RoHS Compliant (Note 2 & 3) Halogen and Antimony Free. "Green" Device (Note 4)

For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable,

and manufactured in IATF 16949 certified facilities), please

contact us or your local Diodes representative. ttps://www.diodes.com/quality/product-definitions/

Random Frequency Modulation for Low EMI

AP3968/69/70

PRIMARY SIDE POWER SWITCHER FOR OFF-LINE SMPS

Primary Side Control for Eliminating Opto-coupler and Secondary

Description

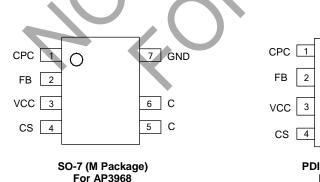
The DIODES™ AP3968 / DIODES™ AP3969 / DIODES™ AP3970 consists of a primary side regulation controller and a high voltage transistor, and is specially designed for off-line power supplies within 12W output power. Typical applications include adapter for ADSL and auxiliary supplies.

The AP3968/69/70 operates at pulse frequency modulation (PFM), and provides accurate constant voltage, constant current (CV/CC) regulation without requiring an opto-coupler and secondary control circuitry. It has internal cable compensation function for tight constant voltage regulation.

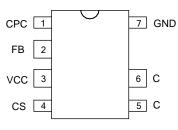
The AP3968/69/70 solution has fewer component numbers, smaller size, and lower total cost.

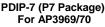
The AP3968 is packaged in SO-7. The AP3969 is available in PDIP-7. The AP3970 is available in PDIP-7 and PDIP-8 packages.

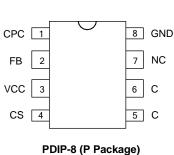
Applications


- Chargers
- Adapters
- Set top boxes
- Auxiliary supplies
- DVD

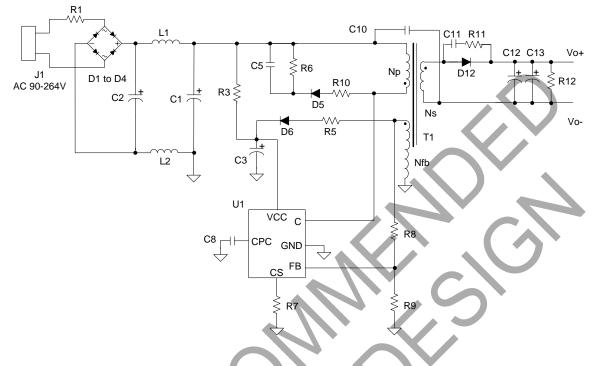
Notes:


- LED drivers


 - 1. Typical continuous power in a non-ventilated enclosed adapter measured at +50°C ambient. 2. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
 - 3. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free
 - 4. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.


Pin Assignments

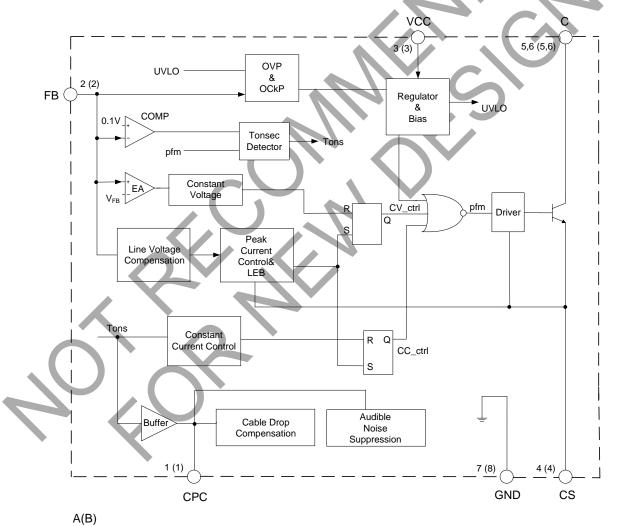
(Top View)



For AP3970

Typical Applications Circuit

Typical Application of AP3969 (9V/800mA)


Item	Function	QTY	ltem	Function	QTY
C1	10.0µF/400V, electrolytic	1	U1	AP3969	1
C2	4.7µF/400V, electrolytic	1	R1	11Ω, 2W	1
C3	3.3µF/50V, electrolytic	1	R3	3.3MΩ/0.25W	1
C5	1nF/1kV, ceramic	1	R5	3.9Ω, 0805	1
C8	0.01µF, 0805	1	R6	150kΩ, 1206	1
C10	1nF/250Vac, Y1 capacitor		R7	1Ω, 1206	1
C11	1nF, 0805	1	R8	20kΩ, 0805	1
C12, C13	470μF/16V	2	R9	13kΩ, 0805	1
D1 to D6	1N4007, rectifier diode	6	R10	360 Ω, 0805	1
D12	MBR3100	1	R11	27Ω, 0805	1
L1	470µH, inductor	1	R12	1.2kΩ, 0805	1
L2	Bead, 0805	1	T1	EE16 core, PC40, transformer	1

Pin Descriptions

Pin I	Pin Number		Pin Number Pin Name		Function
SO-7/PDIP-7	PDIP-8	Pin Name	Function		
1	1	CPC	This pin connects a capacitor to GND for output cable compensation		
2	2	FB	The voltage feedback from auxiliary winding		
3	3	VCC	This pin receives rectified voltage from the auxiliary winding of the transformer		
4	4	CS	Current sense for primary side of transformer		
5, 6	5, 6	С	This pin is connected with an internal power BJT's collector		
_	7	NC	Not connected		
7	8	GND	This pin is the signal reference ground		

Functional Block Diagram

Absolute Maximum Ratings (Note 5)

Symbol	Parameter	Ra	Rating		
Vcc	Supply Voltage	-0.3	-0.3 to 22		
V _{FB}	FB Input Voltage	-11	-1 to 10		
V _{CBO}	Collector-emitter Voltage	7	00	V	
		AP3968/69	1.5	A	
_	Collector DC Current	AP3970 4			
TJ	Operating Junction Temperature	+	+150		
T _{STG}	Storage Temperature	-65 to +150		°C	
T _{LEAD}	Lead Temperature (Soldering, 10 sec)	+300		°C	
-	ESD (Machine Model)	2	.00	V	
_	ESD (Human Body Model)	2	000	V	
PD	Total Power Dissipation	AP3968 AP3969 AP3970	0.7 0.9 1.1	W	

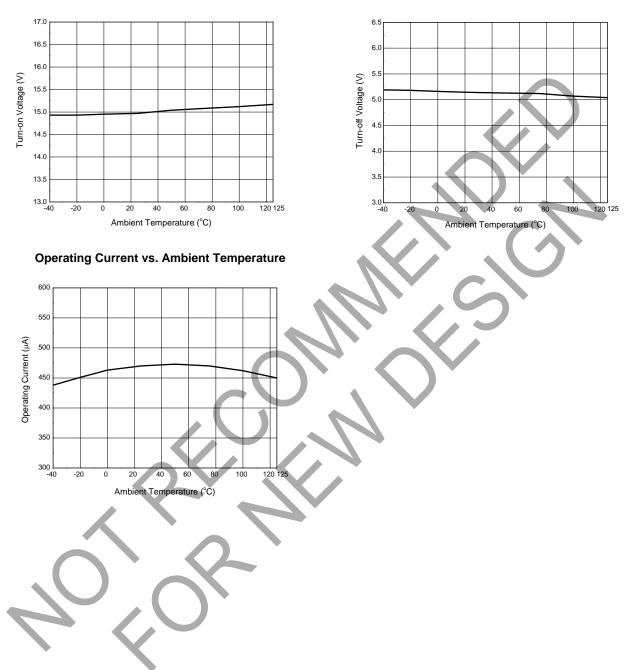
Note: 5. Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability.

Recommended Operating Conditions

Symbol		Parameter	Min	Мах	Unit
Vcc	Supply Voltage		-	22	V
Тор	Operating Temperat	ture Range	-40	+85	°C
f(MAX)	Maximum Operating	Frequency	-	60	kHz

Thermal Impedance

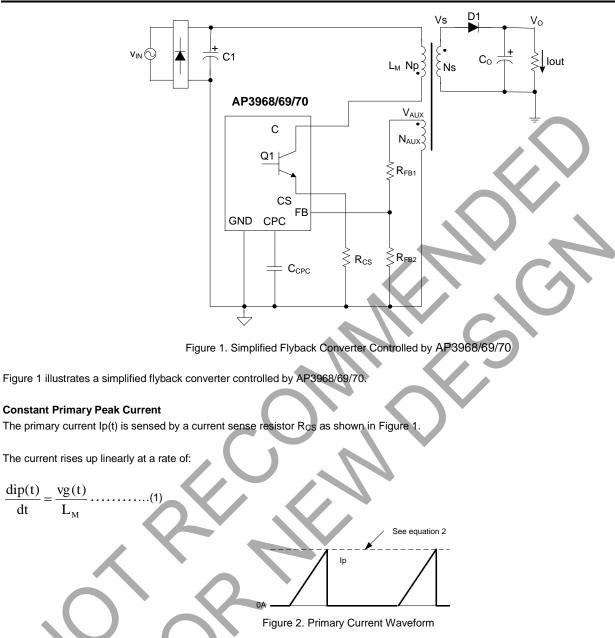
Symbol	Parameter	Val	ue	Unit
		AP3968	100	
θJA	Junction to Ambient	AP3969	80	
		AP3970	65	00M/
		AP3968	50	°C/W
Өлс	Junction to Case	AP3969	40	
		AP3970	35	



Electrical Characteristics (@Vcc=15V, TJ=+25°C, unless otherwise specified.)

Symbol	Parameters	Conditions		Тур	Max	Unit
UVLO SECTIO	ON					
V _{ON}	Turn-on Voltage	-	13	15	17	V
VOFF	Turn-off Voltage	No drive Current	4.5	5.3	6.3	V
STANDBY CU	RRENT SECTION					
Ist	Start-up Current	Vcc=Von-0.5V	_	0.2	0.6	
Icc	Operating Current	—	320	435	550	μA
FEEDBACK IN	NPUT SECTION					
VFB	FB Threshold Voltage	-	4.23	4.3	4.37	V
I _{FB}	FB Pin Input Current	V _{FB} =4V	1.5	3.5	5.5	μA
POWER TRAN	NSISTOR SECTION					
VCE(SAT)	Collector-emitter Saturation Voltage	AP3968/69: Ic=0.5A AP3970: Ic=1A		7	0.3	V
L		AP3968/69	14	17) –	_
hfe	DC Current Gain	AP3970	17	26	_	_
ICEO	Leakage Current				60	nA
OVER TEMPE	RATURE PROTECTION					
TSHDN	Shutdown Temperature		+125	+160	—	°C
-	Temperature Hysteresis			+40	_	°C

Performance Characteristics



Turn-on Voltage vs. Ambient Temperature

Turn-off Voltage vs. Ambient Temperature

Operation Description

As illustrated in Figure 2, when the current lp(t) rises up to lpk, the switch Q1 turns off. The constant peak current is given by: Ipk = $\frac{Vcs}{Rcs}$(2)

The energy stored in the magnetizing inductance L_M each cycle is therefore:

$$Eg = \frac{1}{2} \cdot L_{M} \cdot Ipk^{2} \dots (3)$$

dt

So the power transferring from input to output is given by:

AP3968/69/70 Document number: DS36759 Rev. 3 - 3

Operation Description (continued)

Where f_{SW} is the switching frequency. When the peak current lpk is constant, the output power depends on the switching frequency f_{SW}.

Constant Voltage Operation

The AP3968/69/70 captures the auxiliary winding feedback voltage at FB pin and operates in constant-voltage (CV) mode to regulate the output voltage. Assuming the secondary winding is master, the auxiliary winding is slave during the D1 on-time. The auxiliary voltage is given by:

Where Vd is the diode forward drop voltage, NAUX is the turns of auxiliary winding, and Ns is the turns of secondary winding.

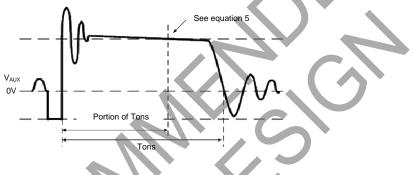
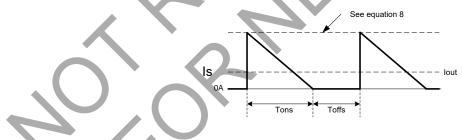



Figure 3. Auxiliary Voltage Waveform

The output voltage is different from the secondary voltage in a diode forward drop voltage V_d which depends on the current. If the secondary voltage is always detected at a constant secondary current, the difference between the output voltage and the secondary voltage will be a fixed V_d . The voltage detection point is portion of Tons after D1 is turned on. The CV loop control function of AP3968/69/70 then generates a D1 off-time to regulate the output voltage.

Constant Current Operation

The AP3968/69/70 is designed to work in constant current (CC) mode. Figure 4 shows the secondary current waveforms.

In CC operation, the CC loop control function of AP3968/69/70 will keep a fixed proportion between D1 on-time Tons and D1 off-time Toffs by discharging or charging the built-in capacitance connected. This fixed proportion is

The relation between the output constant-current and secondary peak current lpks is given by:

Operation Description (continued)

At the instant of D1 turn-on, the primary current transfers to the secondary at an amplitude of:

$$Ipks = \frac{N_{P}}{N_{S}} \cdot Ipk \dots (8)$$

Thus the output constant current is given by:

$$Iout = \frac{2}{7} \cdot \frac{N_{\rm P}}{N_{\rm S}} \cdot Ipk \dots (9)$$

Leading Edge Blanking (LEB)

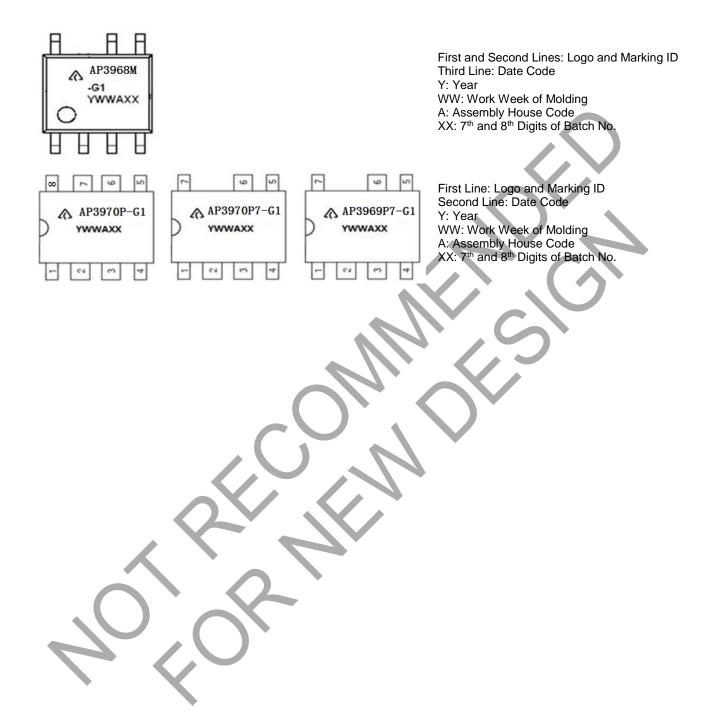
When the power switch is turned on, a turn-on spike on the output pulse rising edge will occur on the sense-resistor. To avoid false termination of the switching pulse, a typical 500ns leading edge blanking is built in. During this blanking period, the current sense comparator is disabled and the gate driver cannot be switched off.

The built-in LEB in AP3968/69/70 has shorter delay time from current sense terminal to output pulse than those IC solutions adopting external RC filter as LEB.

Built-in Cable Compensation

The AP3968/69/70 has built-in fixed voltage of 0.35V typical to compensate the drop of output cable when the load is changed from zero to full load. A typical 0.01µF external capacitor connected to the CPC pin is used to smooth voltage signal for cable compensation.

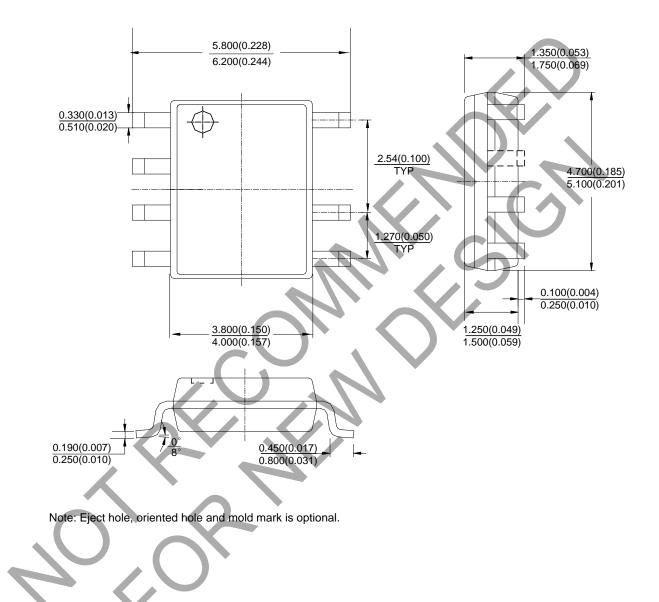
Over Temperature Protection


The AP3968/69/70 has internal thermal sensing circuit to shut down the PFM driver output when the die temperature reaches +160°C typical. When the die temperature drops about 40°C, the IC will recover automatically to normal operation.

Ordering Information <u>AP39XX XX XX -</u> **RoHS/Green Product Name** Product Version Package Packing 68 : AP3968 TR : Tape & Reel G1: Green M : SO-7 69: AP3969 P7: PDIP-7 Blank : Tube 70 : AP3970 P: PDIP-8

Package		Part Number	Marking ID	Packing	
гаскауе	Temperature Range		Marking ID	Qty.	Carrier
SO-7		AP3968MTR-G1	AP3968M-G1	4000	Tape & Reel
	-40°C to +85°C	AP3969P7-G1	AP3969P7-G1	50	Tube
PDIP-7	-40 C to +83 C	AP3970P7-G1	AP3970P7-G1	50	Tube
PDIP-8		AP3970P-G1	AP3970P-G1	50	Tube

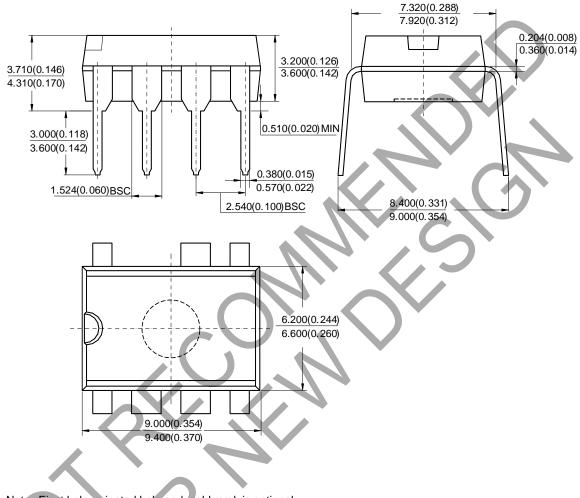
Marking Information



Package Outline Dimensions (All dimensions in mm(inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

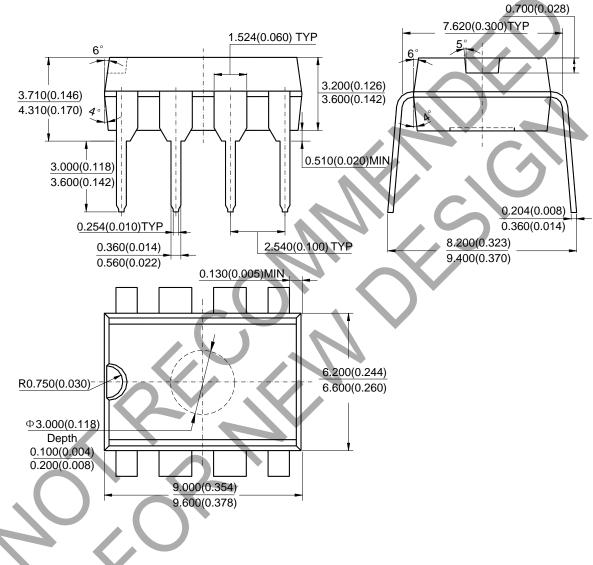
(1) Package Type: SO-7



Package Outline Dimensions (continued) (All dimensions in mm (inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

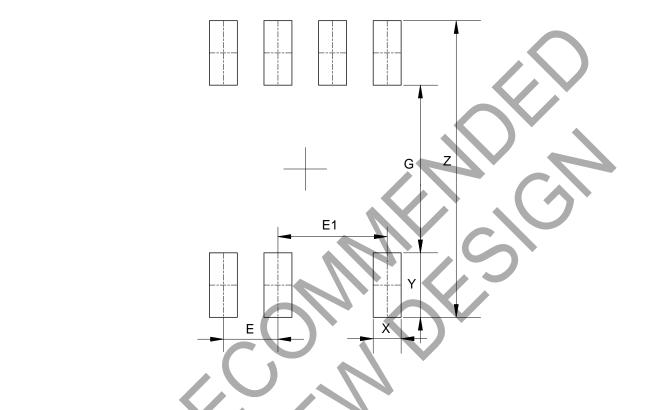
(2) Package Type: PDIP-7


Note: Eject hole, oriented hole and mold mark is optional

Package Outline Dimensions (continued) (All dimensions in mm (inch).)

Please see http://www.diodes.com/package-outlines.html for the latest version.

(3) Package Type: PDIP-8


Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

(1) Package Type: SO-7

Dimensions	Z	G	X	Y	E	E1
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050	2.540/0.100

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (<u>https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales</u>) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

DIODES is a trademark of Diodes Incorporated in the United States and other countries. The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. © 2022 Diodes Incorporated. All Rights Reserved.

www.diodes.com