



AP91350H

#### SAS DISABLE +5V eFUSE WITH INTEGRATED ISOFET

### **Description**


The eFuse is a 5V protection device with a bidirectional switch that incorporates input slew rate control to reduce input surge current and reverse current detection to prevent discharge to VCC from VOUT. The eFuse protection features include undervoltage lockout, a fixed 2.5A current limit, trimmed fast response overvoltage protection and thermal shutdown. The EN/FAULT line is a tri-state bidirectional interface that can be used to disable the output by pulling the line low through an external open-drain device. If a thermal fault occurs, the voltage on the pin will go to an intermediate voltage indicating a fault and it can be connected to another device to cause simultaneous shutdown. The SAS pin is an ESD protected interface that allows direct external control of the eFuse. Driving the SAS pin high pulls the enable line low causing the eFuse to shut down and enter a low quiescent current state.

The integrated ISOFET latches off when the reverse current is detected. This can be reset only by triggering the undervoltage lockout, by EN/FAULT pin or when voltage on the output pin (VOUT) falls below the supply pin voltage (V<sub>CC</sub>) in the AP91350H.

The AP91350H is available in a standard Green W-QFN3020-12 package and is RoHS compliant.

### **Pin Assignments**

#### W-QFN3020-12

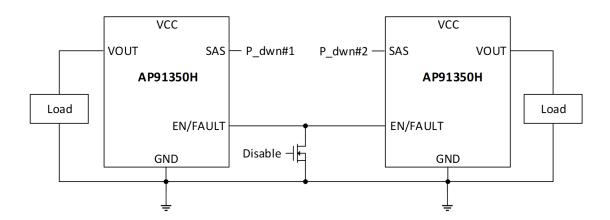


Top View

#### **Features**

- SAS Disable
  - 2.1V Signal Disables the eFuse
  - ESD Compliant to 2kV HBM and 1kV CDM
- Integrated ISOFET That Latches Off When Reverse Current is Detected. Latch Off is Reset by
  - Vout Falling Below Vcc
  - **UVLO** Trigger
  - **EN/FAULT Pin**
- Input Tolerant of Continuous +12V
- 50mΩ Typical Total On-Resistance
- Fixed 2.5A Overcurrent Protection (OCP)
- Overvoltage Protection (OVP)
- Fixed 13ms +/- 20% Slew Rate Control (SRC)
- Overtemperature Protection (OTP)
- Undervoltage Lockout (UVLO)
- Thermally Efficient Low Profile Package, W-QFN3020-12
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

### **Applications**


- HHD drives
- SSD drives
- Mother board power management
- Printer load power management
- Fan drives

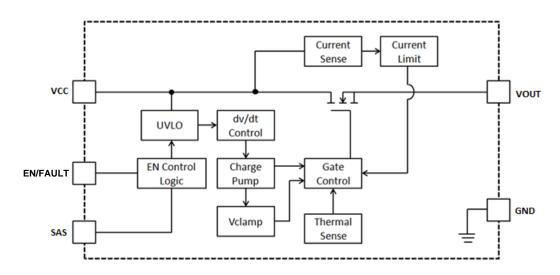
Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.



# **Typical Applications Circuit**




# **Pin Descriptions**

| Pin Number | Pin Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2, 3    | VCC      | Supply input, a minimum 10µF (Note 4) capacitor is needed to supply internal charge pump. The capacitor return should be connected directly to the GND pin.                                                                                                                                                                                                                                                                                             |
| 4          | SAS      | SAS disable. When this pin is pulled high to a voltage greater than 2.1V, the eFuse is turned off.                                                                                                                                                                                                                                                                                                                                                      |
| 5          | EN/FAULT | The EN/FAULT pin is a tri-state, bidirectional interface. It can be used to enable or disable the output of the device by pulling it to ground using an open-drain device. If a thermal fault occurs, the voltage on this pin will go to an intermediate state to signal a monitoring circuit that the device is in thermal shutdown. It can also be connected to another device in this family to cause a simultaneous shutdown during thermal events. |
| 6, 7, 8    | NC       | Do not connect on PCB, internally connected for production purpose.                                                                                                                                                                                                                                                                                                                                                                                     |
| 9, 10, 11  | VOUT     | Output: eFuse controlled output; a 20µF capacitor is needed for overvoltage protection stability. The capacitor return should be connected directly to the GND pin.                                                                                                                                                                                                                                                                                     |
| 12         | GND      | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13         | GND      | Ground exposed pad                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Note: 4. Minimum input capacitance is 10µF. Please refer to the *Input Capacitor Selection* in *Application Note* section.



# **Functional Block Diagram**



# Absolute Maximum Ratings (Note 5) (@ TA = +25°C, unless otherwise specified.)

| Symbol               | Parameter                                                 | Ratings                  | Unit        |      |
|----------------------|-----------------------------------------------------------|--------------------------|-------------|------|
| V/CC                 | land Valence                                              | Steady State             | -0.3 to 16  | V    |
| VCC Input Voltage    | Input Voltage                                             | Transient (100ms)        | -0.3 to 21  | V    |
| EN/FAULT             | Enable Voltage                                            |                          | -0.3 to 6   | V    |
| SAS                  | SAS Disable Voltage                                       |                          | -0.3 to 3.6 | V    |
| VOUT                 | VOUT Voltage                                              | -0.3 to 7.0              | V           |      |
| ESD HBM              | Human Body ESD Protection JESD22-A114                     | 2000                     | V           |      |
| ESD CDM              | Charged Device Model ESD Protection JESD22-C101           | 1000                     | V           |      |
| T <sub>J</sub> (Max) | Maximum Junction Temperature                              | +150                     | °C          |      |
| Tst                  | Storage Temperature                                       | -65 to +150              | °C          |      |
| PD                   | Power Dissipation (T <sub>A</sub> = +25°C)                | W-QFN3020-12             | 1.3         | W    |
| R <sub>θJA</sub>     | Thermal Resistance, Junction to Ambient (0.5 square inch) | W-QFN3020-12<br>(Note 6) | 40          | °C/W |

Notes:

- 5. Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability.
- 6. For a device surface mounted on 25mm by 25mm by 1.6mm FR-4 PCB with high coverage of single sided 2oz copper, in still air conditions; the device is measured when operating in a steady state condition.

# $\label{eq:commended Operating Conditions} \ \ \text{(All specifications are for -10°C < T_A < +85°C, V_{CC} = 5V, unless otherwise noted.)}$

| Symbol | Parameter                     | Min | Тур | Max | Unit |
|--------|-------------------------------|-----|-----|-----|------|
| VCC    | Input Voltage Range           | 3.6 | -   | 12  | V    |
| TA     | Operating Ambient Temperature | -40 | _   | +85 | °C   |



### **Electrical Characteristics** (Note 7) (All specifications are for -10°C < T<sub>A</sub> < +85°C, V<sub>CC</sub> = 5V, unless otherwise noted.)

| Symbol              | Parameters                               | Conditions                                                   | Min  | Тур  | Max  | Unit  |  |
|---------------------|------------------------------------------|--------------------------------------------------------------|------|------|------|-------|--|
| Supply Curr         | Supply Current                           |                                                              |      |      |      |       |  |
|                     |                                          | EN = High, SAS = 0, ILOAD = 0A                               |      | _    | 300  | μA    |  |
| Iq                  | VCC Supply Current                       | Fault Latch off                                              |      | 100  | _    | μΑ    |  |
|                     |                                          | EN = Low                                                     | _    | _    | 100  | μΑ    |  |
| Power FET           |                                          |                                                              |      | •    |      |       |  |
|                     | On Basistanas                            | T <sub>A</sub> = +25°C                                       | _    | 50   | 65   | mΩ    |  |
| R <sub>DS(ON)</sub> | On-Resistance                            | T <sub>J</sub> = +80°C                                       | _    | 95   | _    | mΩ    |  |
| t <sub>ON-DLY</sub> | Turn-On Delay                            | Enable I <sub>D</sub> = 100mA, 1A Resistive Load             | _    | 500  | _    | μs    |  |
| IDC                 | Continuous Current                       | T <sub>A</sub> = +25°C, 0.5 Square inch Copper               | _    | 2    | _    | Α     |  |
| I <sub>OFF</sub>    | Off-State Leakage                        | Vcc = 12V, EN = Low                                          | _    | _    | 1    | μA    |  |
| Slew Rate C         | control                                  |                                                              |      | •    | •    | •     |  |
| SRC                 | Slew Rate Control                        | EN to V <sub>OUT</sub> = 4.7V (Note 8)                       | 10.4 | 13.0 | 15.6 | ms    |  |
| Current Pro         | tection                                  |                                                              |      |      |      |       |  |
| ILIM                | Current Limit                            | _                                                            | 2.5  | 3.0  | _    | А     |  |
| I <sub>SHORT</sub>  | Short-Circuit Current                    | _                                                            | _    | 3.0  | _    | Α     |  |
| tıLım               | Current Limit Response                   | _                                                            | 5.5  | _    | 40   | μs    |  |
| Reverse Cui         | rrent Limit/Undervoltage Protection      |                                                              |      |      |      |       |  |
| IQREVERSE           | Fast Reverse Current Limit               | (Note 9)                                                     | 0.9  | _    | 1.7  | А     |  |
| tQREVERSE           | Fast Reverse Current Limit Response Time | Vcc dv/dt = -5V/1ms                                          | 5    | _    | 10   | μs    |  |
| UVLO                | Undervoltage Lockout                     | UVLO Rising                                                  | 3.8  | 4.0  | 4.2  | V     |  |
| UVLO-hys            | Undervoltage Hysteresis                  | _                                                            | _    | 0.3  | _    | V     |  |
| _                   | Undervoltage Response                    | _                                                            | _    | 2.0  | _    | μs    |  |
| Overvoltage         | Protection                               |                                                              |      |      |      |       |  |
| OVP                 | Overvoltage Clamping                     | _                                                            | 5.5  | 6    | 6.25 | V     |  |
| tovp                | Overvoltage Response                     | Cout = $20\mu$ F, $dv/dt$ (Vcc) = $0.5V/\mu$ s Vout < $6.5V$ | _    | 20   | 40   | μs    |  |
| Thermal Pro         | otection                                 |                                                              |      |      |      |       |  |
| TH <sub>SD</sub>    | Shutdown Temperature                     | _                                                            | +130 | +150 | +200 | °C    |  |
| Enable/Faul         | Enable/Fault                             |                                                              |      |      |      |       |  |
| VL                  | Logic Level Low                          | Output Disabled (Note 8)                                     | 0.35 | _    | 0.8  | V     |  |
| VM                  | Logic Level Mid                          | Thermal Fault, Output Disabled (Note 8)                      | 0.9  | _    | 1.95 | V     |  |
| Vн                  | Logic Level High                         | Output Enabled                                               | 2.1  | _    | 3.3  | V     |  |
| V <sub>MAX</sub>    | Maximum High State                       | _                                                            | 3.4  | _    | 5.2  | V     |  |
| IL                  | Logic Low Sink Current                   | EN = 0V                                                      | _    | -12  | -20  | μA    |  |
| lн                  | Logic Level High                         | EN = 3.3V                                                    | _    | _    | 1    | μA    |  |
| FAN                 | Fan Out                                  | _                                                            | _    | _    | 3    | Units |  |

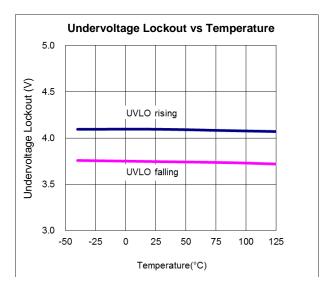
Notes:

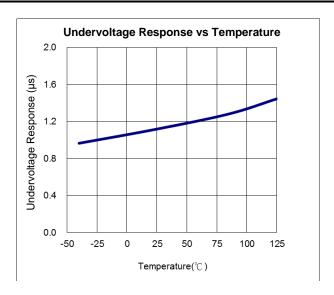
Typical data is measured at T<sub>A</sub> = +25°C, V<sub>CC</sub> = 5V. The maximum and minimum parameters values over operating temperature range are not tested in production, they are guaranteed by design, characterization and process control.
 The slew rate control is held in reset until the input voltage is greater than the UVLO rising threshold and Enable = High. The slew rate control is reset when input voltage drops below UVLO falling threshold, Enable changes from High to Mid or Low, SA = High or reverse current detection.
 Reverse current detection will latch off the ISOFET switch; In AP91350H, this condition can be reset by undervoltage lockout, by EN/FAULT and SAS pins,

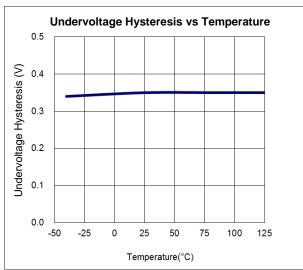
or when  $V_{OUT}$  falls below the supply pin voltage ( $V_{CC}$ ) by 100mV typical at  $T_A = +25^{\circ}C$ ,  $V_{CC} = 5V$ .

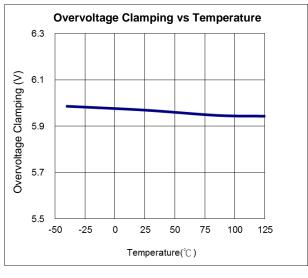


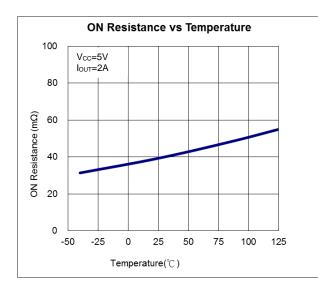
# Electrical Characteristics (continued) (Note 7) (All specifications are for -10°C < TA < +85°C, VCC = 5V, unless otherwise noted.)

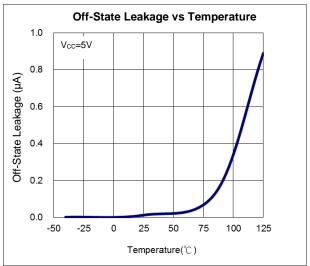

| Symbol              | Parameters                 | Conditions      | Min  | Тур | Max  | Unit |
|---------------------|----------------------------|-----------------|------|-----|------|------|
| SAS Disable         | SAS Disable                |                 |      |     |      |      |
| SASL                | Logic Level Low            | Output Enabled  | 0.35 | _   | 1.05 | V    |
| SASh                | Logic Level High           | Output Disabled | 1.15 | 1.4 | 2.1  | V    |
| SAS <sub>Hmax</sub> | Maximum Pin Voltage        | _               | _    | _   | 3.3  | V    |
| SAS- <sub>ΩIN</sub> | Input Impedance            | To GND          | 350  | 500 | 1000 | kΩ   |
| SAS-TDLY            | Deglitch Filter            | _               | 2    | _   | 50   | μs   |
| _                   | Human Body JESD22-A114     | _               | 1    | _   | _    | kV   |
| _                   | Charged Device JESD22-C101 | _               | 500  | _   | _    | V    |


Note:


<sup>7.</sup> Typical data is measured at T<sub>A</sub> = +25°C, V<sub>CC</sub> = 5V. The maximum and minimum parameters values over operating temperature range are not tested in production, they are guaranteed by design, characterization and process control.

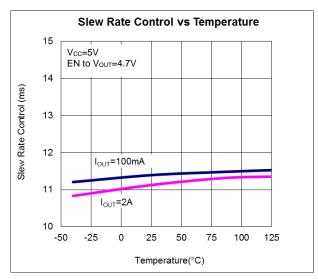


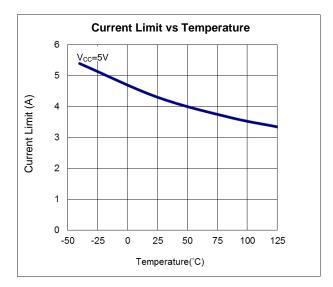


### **Performance Characteristic**

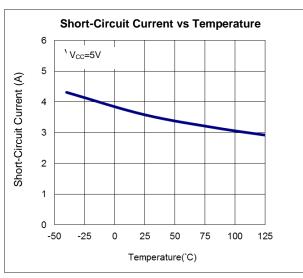


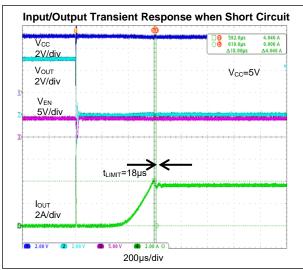


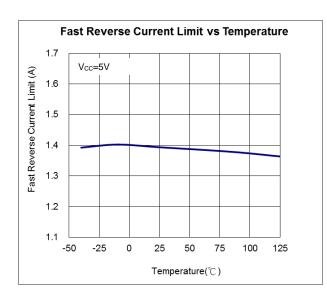


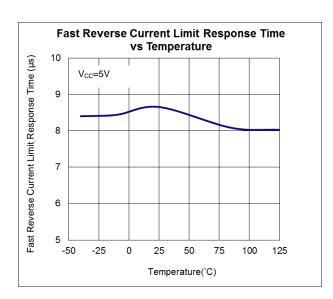





# **Performance Characteristic (continued)**
















### **Application Note**

#### **Theory of Operation**

The AP91350H is a self-protected, resettable electronic fuse. It monitors the input and output voltage, the output current and the die temperature. When the AP91350H is powered up, it will ramp up the output voltage based on the fixed slew rate (see Electrical Characteristics above) and current will begin to flow. The Overcurrent Protection, Overvoltage Clamp, Undervoltage Lockout and Thermal Protection are internally set.

Also, integrated reverse blocking MOSFET would prevent back-drive from an active load inadvertently causing undetermined behavior in the application.

#### Overvoltage Clamping

The AP91350H monitors the input voltage and clamp output voltage once it exceeds 6.25V (max). This will allow for transient on the input for a short period of time. If the input voltage stays above 6.25V (max) for an extended period of time, the voltage drop across the FET with the load current will increase the die temperature and the thermal shutdown feature will protect the device and shut it down.

#### **Undervoltage Lockout**

The input voltage of AP91350H is monitored by a UVLO circuit (undervoltage lockout). If the input voltage drops below this threshold, the output transistor will be pulled into a high impedance state.

#### **Input Capacitor Selection**

The AP91350H is designed to feature multiple fault protections to protect application circuit and device itself. VCC input may have voltage transient upon immediate switch-off behavior by fault events like SCP (Short-Circuit Protection) and OTP (Overtemperature Protection), if excessive voltage transient on VCC is observed, increase capacitance on VCC up to 10µF is recommended.

#### Enable/Fault

The AP91350H has a tri-state EN/FAULT pin. It is used to turn on and off the device with high and low signals from a GPIO, but can also indicate a thermal fault. When the EN/FAULT pin is pulled low, the output is turned off; when the EN/FAULT pin is pulled high, the output is turned on. Also, the EN/FAULT pin would be internally pulled high after V<sub>CC</sub> reaches UVLO. In the event of a thermal fault, the EN/FAULT pin will be pulled low to an intermediate voltage by an internal circuit. This can be used to chain up to 3 eFuses together, like AP91350H, NIS5132 (12V eFuse), or NIS5135 (5V eFuse), so during a thermal shutdown, the linked devices turn off as well.

Due to this fault indication capability, it should not be connected to any type of logic with an internal pullup device.

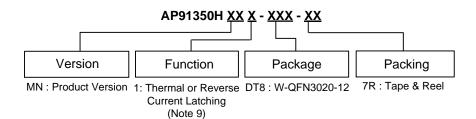
The AP91350H connected to a 2<sup>nd</sup> device will latch off until the EN/FAULT pin has been pulled to low and then allowed to go back up to a high signal, or SAS pin has been toggled from High to Low or if the power has been cycled. Once the part starts up again, it will go through the start-up ramp determined by the internal circuit, 13ms (typ).

| Symbol           | Description                      | Enable/Fault   | eFuse State | Latching |
|------------------|----------------------------------|----------------|-------------|----------|
| UVLO             | Under Voltage Lock Out           | VL             | Off         | No       |
| SASH             | SAS Disable = 1                  | VL             | Off         | N/A      |
| TH <sub>SD</sub> | Thermal Shutdown                 | V <sub>M</sub> | Off         | Yes      |
| IREVERSE         | Reverse Current Protection       | VM             | Off         | (Note 9) |
| SASo             | SAS Disable = Open               | VH             | On          | N/A      |
| SASL             | SAS Disable = 0                  | VH             | On          | N/A      |
| _                | V <sub>CC</sub> > UVLO, No Fault | V <sub>H</sub> | On          | N/A      |

Table 1. EN/FAULT Signal Levels & Device Status

Note: 9. Reverse current detection will latch off the ISOFET switch; In AP91350H, this condition can be reset by undervoltage lockout, by EN/FAULT and SAS pins, or when  $V_{OUT}$  falls below the supply pin voltage ( $V_{CC}$ ) by 100mV typical at  $T_A = +25^{\circ}C$ ,  $V_{CC} = 5V$ .

#### **Thermal Protection**


The AP91350H has an integrated temperature sensing circuit that protects the die in the event of overtemperature. The trip point has been intentionally set high at +150°C (typ) to allow for increased trip times during high power transient events. The AP91350H will shut down current flow to the output when the die temperature reaches +150°C (typ). The AP91350H will restart after the Enable pin has been toggled or the input power has been cycled.

Even though the thermal trip point has been set high to allow for high current transients, the circuit design should accomplish best thermal performance with good thermal layout of the PCB. It is not recommended to operate AP91350H above +150°C over extended period of time.

8 of 12 AP91350H



# **Ordering Information**



| Part Number        | Part Number Suffix | Package Code | ckage Code Package (Note 10) |      | Packing     |  |
|--------------------|--------------------|--------------|------------------------------|------|-------------|--|
| Fait Nulliber      | Fait Number Sumx   | Fackage Code | Fackage (Note 10)            | Qty. | Carrier     |  |
| AP91350HMN1-DT8-7R | -7R                | DT8          | W-QFN3020-12                 | 3000 | Tape & Reel |  |

Notes: 9. Reverse current detection will latch off the ISOFET switch; In AP91350H, this condition can be reset by undervoltage lockout, by EN/FAULT and SAS pins, or when V<sub>OUT</sub> falls below the supply pin voltage (V<sub>CC</sub>) by 100mV typical at T<sub>A</sub> = +25°C, V<sub>CC</sub> = 5V.

10. Pad layout as shown in Diodes Incorporated's package outline PDFs, which can be found on our website at http://www.diodes.com/package-outlines.html.

# **Marking Information**

W-QFN3020-12

(Top View)

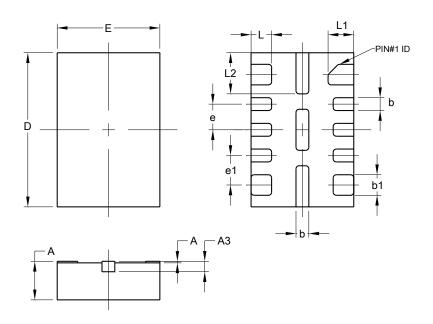
XX: Identification Code

 $\underline{Y}$ : Year: 0 to 9 (ex: 4 = 2024)

 $\underline{W}$ : Week: A to Z: week 1 to 26; a to z: week 27 to 52;

z represents week 52 and 53

<u>y</u>: Internal Code<u>x</u>: Internal Code

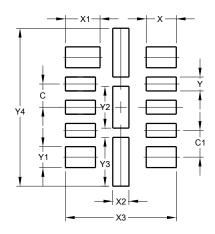

| Part Number        | Package      | Identification Code |
|--------------------|--------------|---------------------|
| AP91350HMN1-DT8-7R | W-QFN3020-12 | H9                  |



# **Package Outline Dimensions**

Please see http://www.diodes.com/package-outlines.html for the latest version.

#### W-QFN3020-12




| W-QFN3020-12         |       |        |       |  |  |
|----------------------|-------|--------|-------|--|--|
| Dim                  | Min   | Max    | Тур   |  |  |
| Α                    | 0.700 | 0.800  | -     |  |  |
| <b>A</b> 1           | 0     | 0.05   | -     |  |  |
| А3                   | 0     | .203RE | F     |  |  |
| b                    | 0.200 | 0.300  | -     |  |  |
| b1                   | 0.350 | 0.450  | -     |  |  |
| D                    | 1.900 | 2.100  | 2.000 |  |  |
| Е                    | 2.900 | 3.100  | 3.000 |  |  |
| е                    | -     | -      | 0.500 |  |  |
| e1                   | -     | -      | 0.575 |  |  |
| L                    | 0.350 | 0.450  | -     |  |  |
| L1                   | 0.450 | 0.550  | =     |  |  |
| L2                   | 0.750 | 0.850  | =     |  |  |
| All Dimensions in mm |       |        |       |  |  |

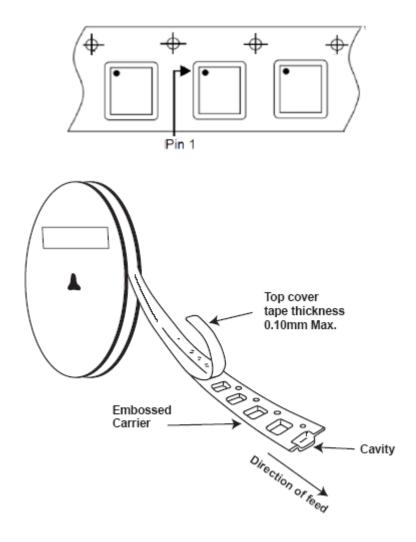
# **Suggested Pad Layout**

Please see http://www.diodes.com/package-outlines.html for the latest version.

### W-QFN3020-12



| Dimensions | Value<br>(in mm) |
|------------|------------------|
| С          | 0.500            |
| G          | 0.575            |
| Χ          | 0.650            |
| X1         | 0.750            |
| X2         | 0.350            |
| Х3         | 2.400            |
| Y          | 0.300            |
| Y1         | 0.450            |
| Y2         | 0.900            |
| Y3         | 1.050            |
| Y4         | 3.400            |


# **Mechanical Data**

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish-Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 @3
- Weight: 0.012 grams (Approximate)



# **Taping Orientation**

Package Type: W-QFN3020-12



Note: 11. The taping orientation of the other package type can be found on our website at https://www.diodes.com/assets/Packaging-Support-Docs/ap02007.pdf.



#### **IMPORTANT NOTICE**

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (<a href="https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/">https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/</a>) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at <a href="https://www.diodes.com/about/company/terms-and-conditions/important-notice">https://www.diodes.com/about/company/terms-and-conditions/important-notice</a>

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners.

© 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com

AP91350H 12 of 12 January 2024

Document number: DS44486 Rev. 2 - 2 www.diodes.com © 2024 Copyright Diodes Incorporated. All Rights Reserved.