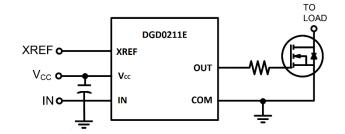


1.9A HIGH SPEED LOW-SIDE GATE DRIVER

Description


The DGD0211E single high-speed/low-side MOSFET and IGBT driver is capable of driving 1.9A of peak current. The device has adjustable logic input thresholds depending on the XREF level, allowing use with 5.0V, 3.3V, and 2.5V supply systems. The DGD0211E also provides a single non-inverted input.

Because of fast propagation times of 34ns typical and rise/fall times of 18ns typical, the DGD0211E is well suited for high-speed applications such as switch-mode power supplies and PFC circuits.

The DGD0211E is offered in the TSOT25 package and the operating temperature extends from -40°C to +125°C.

Applications

- Line drivers
- Motor controls
- Switch-mode power supplies

Typical Configuration

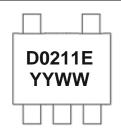
Features

- Low-Side Gate Driver for Driving MOSFETs and IGBTs
- Wide Supply Voltage Operating Range: 4.5V to 18V
- 1.9A Source / 1.8A Sink Output Current Capability
- Single Non-Inverting Input Configuration
- Fast Propagation Delay (34ns Typ)
- Fast Rise and Fall Times (18ns Typ)
- Extended Temperature Range: -40°C to +125°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

Mechanical Data

- Package: TSOT25
- Package Material: Molded Plastic. "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads. Solderable per MIL-STD-202, Method 208 [®]
- Weight: 0.012 grams (Approximate)

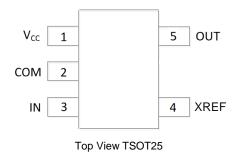
TSOT25


Ordering Information (Note 4)

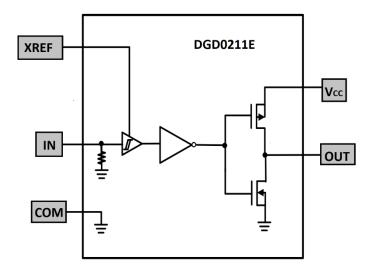
Orderable Part Number	Marking	Marking Reel Size (inches)		Packing		
Orderable Part Number	Orderable Part Number Marking Reel Size (inches)	Tape Width (mm)	Quantity	Carrier		
DGD0211EWT-7	D0211E	7	8	3,000	Reel	

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.


Marking Information

D0211E = Product Type Marking Code YY = Year (ex: 24 = 2024) WW = Week (01 to 53)


Pin Diagrams

Pin Descriptions

Pin Number	Pin Name	Function	
1	Vcc	Supply Input	
2	COM	Supply Return	
3	IN	Non-Inverting Logic Input, in Phase with OUT	
4	XREF	External Reference Voltage, Reference for Input Thresholds	
5	OUT	Gate Drive Output	

Functional Block Diagrams

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Low-Side Fixed Supply Voltage	Vcc	-0.3 to +24	V
Output Voltage (OUT)	Vout	-0.3 to Vcc+0.3	V
Logic Input Voltage (IN)	Vin	-0.3 to VxREF+0.3	V
External Reference Voltage	Vxref	-0.3 to 5.5	V

Thermal Characteristics (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 5)	PD	0.54	W
Thermal Resistance, Junction to Ambient (Note 5)	RθJA	188	°C/W
Operating Temperature	T_J	+150	
Lead Temperature (Soldering, 10s)	TL	+300	°C
Storage Temperature Range	Tstg	-55 to +150	

Note: 5. When mounted on a standard JEDEC 2-layer FR-4 board.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	18	V
Output Voltage (OUT)	V _{OUT}	0	Vcc	V
Logic Input Voltage (IN)	Vin	0	XREF	V
External Reference Voltage	Vxref	2.5	5	V
Ambient Temperature	TA	-40	+125	°C

DC Electrical Characteristics (V_{BIAS} (V_{CC}, V_{BS}) = 12V, @T_A = +25°C, unless otherwise specified.) (Note 6)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Logic "1" Input Voltage	V _{IH}	_	52	ı	%XREF	XREF = 2.5V - 5.0V
Logic "0" Input Voltage	VIL	_	42		%XREF	XREF = 2.5V - 5.0V
Logic "1" Input Bias Current	I _{IN+}	_	_	5	μΑ	V _{IN} = 3V, XREF = 3V
Logic "0" Input Bias Current	I _{IN} -	_	_	2	μΑ	V _{IN} = 0V, XREF = 3V
High Level Output Voltage, VBIAS - VO	Voн	_	34		mV	Iout = 10mA
Low Level Output Voltage	V _{OL}	_	25	I	mV	I _{OUT} = 10mA
Quiescent Vcc Supply Current	Iccq	_	4	10	μΑ	Inputs Open
Output High Short Circuit Pulsed Current	I _{O+}	_	1.9	1	. A	$V_{OUT} = 0V$, $V_{IN} = Logic "1"$, $PW \le 10us$
Output Low Short Circuit Pulsed Current	lo-		1.8	l		V _{OUT} = 12V, V _{IN} = Logic "1", PW ≤ 10us
Output Resistance, High	Rон	_	3.3		Ω	IOUT = 10mA, Vcc = 12V
Output Resistance, Low	R _{OL}	_	2.3		Ω	$I_{OUT} = 10$ mA, $V_{CC} = 12$ V

Note: 6. The V_{IN} and I_{IN} parameters are applicable to the logic input pin: IN. The V_O and I_O parameters are applicable to the output pin: OUT.

AC Electrical Characteristics (V_{CC} = 12V, @T_A = +25°C, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Turn-On Rise Time	tr	_	17	25	ns	C _L = 1000pF, V _{CC} = 12V
Turn-Off Fall Time	t _f	_	18	25	ns	$C_L = 1000 pF, V_{CC} = 12 V$
Turn-On Propagation Delay	ton	_	27	50	ns	Vcc = 12V
Turn-Off Propagation Delay	toff	_	34	55	ns	V _{CC} = 12V

Timing Waveforms

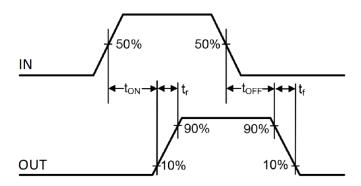


Figure 1. Switching Time Waveform Definitions

Typical Performance Characteristics (Vcc = 12V, @TA = +25°C, unless otherwise specified.)

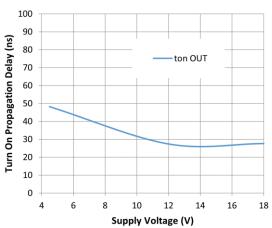


Figure 2. Turn-on Propagation Delay vs. Supply Voltage

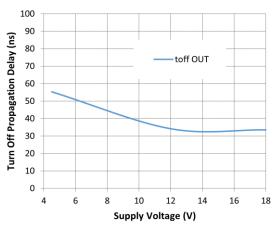


Figure 4. Turn-off Propagation Delay vs. Supply Voltage

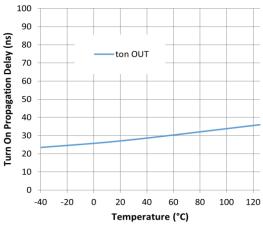


Figure 3. Turn-on Propagation Delay vs. Temperature

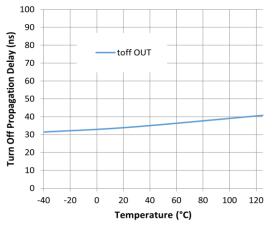


Figure 5. Turn-off Propagation Delay vs. Temperature

Typical Performance Characteristics (Vcc = 12V, @TA = +25°C, unless otherwise specified.)

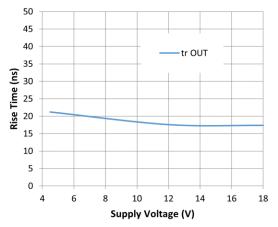


Figure 6. Rise Time vs. Supply Voltage

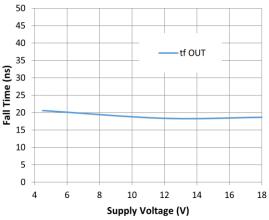


Figure 8. Fall Time vs. Supply Voltage

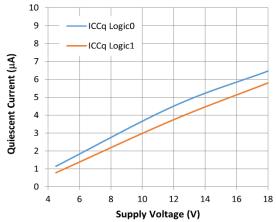


Figure 10. Quiescent Current vs. Supply Voltage

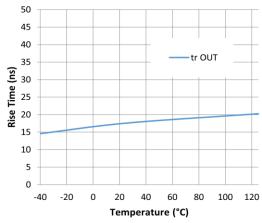


Figure 7. Rise Time vs. Temperature

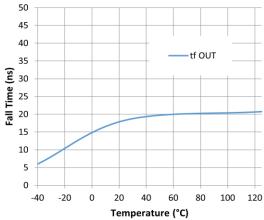


Figure 9. Fall Time vs. Temperature

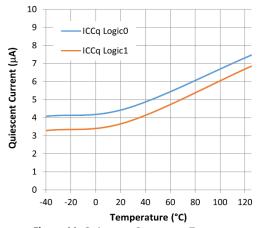


Figure 11. Quiescent Current vs. Temperature

Typical Performance Characteristics (V_{CC} = 12V, @T_A = +25°C, unless otherwise specified.)

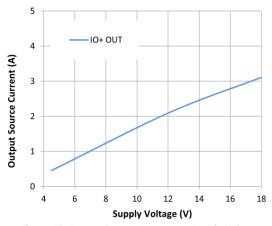


Figure 12. Output Source Current vs. Supply Voltage

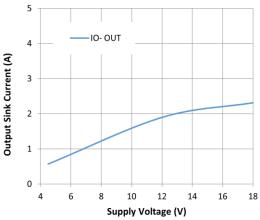


Figure 14. Output Sink Current vs. Supply Voltage

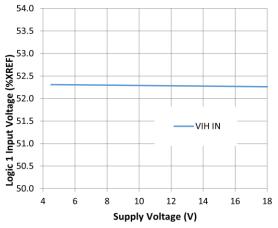


Figure 16. Logic 1 Input Voltage vs. Supply Voltage

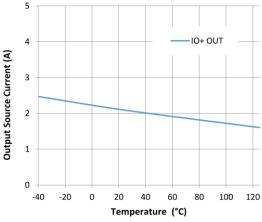


Figure 13. Output Source Current vs. Temperature

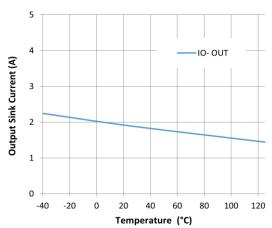


Figure 15. Output Sink Current vs. Temperature

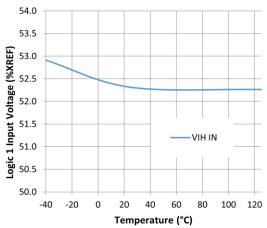


Figure 17. Logic 1 Input Voltage vs. Temperature

Typical Performance Characteristics (V_{CC} = 12V, @T_A = +25°C, unless otherwise specified.)

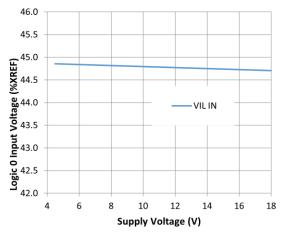


Figure 18. Logic O Input Voltage vs. Supply Voltage

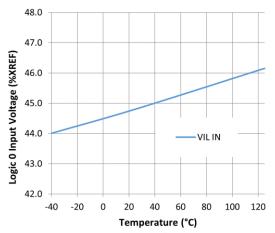
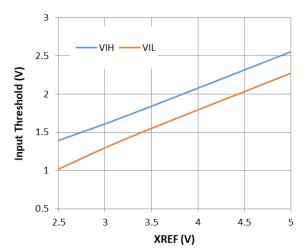


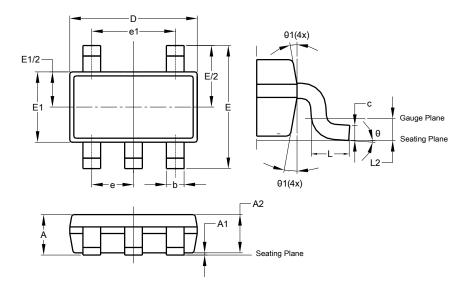
Figure 19. Logic 0 Input Voltage vs. Temperature

Applications Information

The input thresholds of the DGD0211EWT can be adjusted depending on XREF voltage level. This voltage can be set from 2.5V up to 5V, offering compatibility with standard TTL and lower-level logic families. The logic HIGH input voltage threshold is approximately 52% of $V_{\rm XREF}$ and the logic LOW input voltage threshold is approximately 42% of $V_{\rm XREF}$.

To ensure a stable operation, the output of the DGD0211EWT is held LOW during startup until V_{CC} reaches 2.5V. Past this point, the output will follow the input.

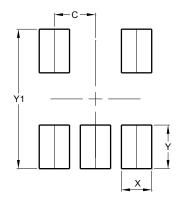



Figure 20. Input Voltage vs. Xref Voltage

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

TSOT25



TSOT25						
Dim	Min Max Typ					
Α	-	1.00	-			
A1	0.01	0.10	-			
A2	0.84	0.90	-			
b	0.30	0.45	-			
С	0.12 0.20		-			
D	-	-	2.90			
Е	-	-	2.80			
E1			1.60			
е	0.95 BSC					
e1	1.90 BSC					
L	0.30	0.50				
L2	0.25 BSC					
θ	0°	8°	4°			
θ1	4°	12°	-			
All Dimensions in mm						

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

TSOT25

Dimensions	Value (in mm)
С	0.950
Х	0.700
Y	1.000
Y1	3.199

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners.

© 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com