

2-Bit Bi-Directional Level Shifter with Automatic Sensing & Ultra Tiny Package

Description

The DIODES LXS0102 is a 2-bit configurable dual supply bidirectional auto sensing translator that does not require a directional control pin. The A and B ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. This allows bidirectional translation between lower and higher logic signal levels.

When the OE pin is low, all I/Os are configured to be high-impedance state.

Power-off protection is implemented to prevent current passing through the device when it is powered-down.

Application(s)

- I2C, SMBus, MDIO
- Low Voltage ASIC Level Translation
- Mobile Phones, PDAs, Cameras

Block Diagram

Figure 1. Block Diagram

Features

- High-Speed with 24Mb/s Data Rate for push-pull applications
- High–Speed with 2Mb/s Data Rate for open-drain applications
- 1.65V to 3.6V on A Port and 2.3V to 5.5V on B Port
- V_{CCA} must be less than or equal to V_{CCB}
- No Direction-Control Signal Needed
- Low Bit-to-Bit Skew
- Non-preferential Power-up Sequencing
- ESD protection exceeds JESD22-A114
 - □ A Port: 2000V HBM
 - B Port: 5KV HBM V, SS, HK
 7KV HBM GBA only
- Integrated 10 k Ω Pull-up Resistors
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

- Packaging (Pb-free & Green):
 - 8-DFN1x1.4 (HK)
 - 8-VSSOP (V)
 - 8-SSOP (SS)
 - 8-WLCSP (GBA)

Notes

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

SSOP-8/VSSOP-8 (TOP VIEW)

UDFN-8 (TOP VIEW)

WLCSP (BOTTOM VIEW)

Pin Description

Pin Name	SSOP VSSOP	DFN	WLCSP	Туре	Description
V _{CCA}	3	1	C1	Power	A-port supply voltage.1.65V \leq V _{CCA} \leq 3.6V
V _{CCB}	7	8	B2	Power	B-port supply voltage. $2.3V \le V_{CCB} \le 5.5V$
A1	5	2	D2	I/O	Input/output A. Referenced to V _{CCA} .
A2	4	3	D1	I/O	Input/output A. Referenced to V _{CCA}
B1	8	7	A2	I/O	Input/output B. Referenced to V _{CCB}
B2	1	6	A1	I/O	Input/output B. Referenced to V _{CCB}
OE	6	5	C2	Input	Output enable (active High). Pull OE low to place all outputs in 3-state mode. Referenced to $V_{\rm CCA}$
GND	2	4	B1	GND	Ground.

Maximum Ratings

g. E	650G . 1500G
Storage Temperature	65°C to +150°C
DC Supply Voltage port B	0.5V to +6.5V
DC Supply Voltage port A	0.5V to +4.6V
Vi(A) referenced DC Input Voltage	0.5V to +4.6V
Vi(B) referenced DC Input Voltage	0.5V to +6.5V
Enable Control Pin DC Input Voltage	0.5V to +4.6V
Continuous output current, I/O	45mA

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{CCA}	V _{CCA} Positive DC Supply Voltage	1.65		3.6	V
V _{CCB}	V _{CCB} Positive DC Supply Voltage	2.3		5.5	V
Voe	Enable Control Pin Voltage	GND		3.6	V
V	I/O Pin Voltage (A1, A2)	GND		VCCA	V
V_{IO}	I/O Pin Voltage (B1, B2)	GND		VCCB	V
	Input transition rise or fall time				
$\Delta t / \Delta v$	A or B port Push-Pull Driving, (V _{CCA} = 1.65V to 3.6V, V _{CCB} = 2.3V to 5.5V)			10	ns/V
	OE ($V_{CCA} = 1.65V$ to $3.6V$, $V_{CCB} = 2.3V$ to $5.5V$)			10	ns/V
T_A	Operating Temperature Range	-40		+85	°C

DC Electrical Characteristics

Vcci is the supply voltage associated with the input port. Vcco is the supply voltage associated with the output port.

Symbol	Parameter	Test Conditions	V _{CCA}	V _{CCB}	Temp.	Min	Тур	Max	Unit
V _{IHB}	B port Input HIGH Voltage	$I_{OHA} = -20uA$ $V_{IA} = V_{CCA} x$ 0.67	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C	V _{CCI} – 0.4			V
V _{ILB}	B port Input LOW Voltage	$\begin{split} I_{OLA} &= 1 mA \\ V_{IA} &= 0.4 V \end{split}$	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C			0.15	V
V	A port Input	I _{OHB} = -20uA	1.65V to 1.95V	2.3V to 5.5V	-40 to 85°C	V _{CCI} – 0.2			V
V _{IHA}	HIGH Voltage	$V_{IB} = V_{CCB} x$ 0.67	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C	V _{CCI} – 0.4			V
V _{ILA}	A port Input LOW Voltage	$\begin{split} I_{OLB} &= 1 mA \\ V_{IB} &= 0.4 V \end{split}$	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C			0.15	V
V_{IH}	Control Pin Input HIGH Voltage		1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C	V _{CCA} x 0.65			V
V _{IL}	Control Pin Input LOW Voltage		1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C			V _{CCA} x 0.35	V
V _{OHB}	B port Output HIGH Voltage	$\begin{split} I_{OHB} &= \text{-}20 uA \\ V_{IA} &\geq V_{CCA} - \\ 0.4 V \end{split}$	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C	0.67 х V _{ССВ}			V
V _{OLB}	B port Output LOW Voltage	$\begin{split} I_{OLB} &= 8 mA \\ V_{IA} &\leq 0.15 V \end{split}$	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C			0.4	V
Voha	A port Output HIGH Voltage	$\begin{split} I_{OHA} &= \text{-}20 uA \\ V_{IB} &\geq V_{CCB} - \\ 0.4 V \end{split}$	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C	0.67 * Vcca			V
Vola	A port Output LOW Voltage	$\begin{split} I_{OLA} &= 8mA \\ V_{IB} &\leq 0.15V \end{split}$	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C			0.4	V
$I_{\rm I}$	Input leakage	OE	1.65V to	2.3V to	25°C			±1	μA

Symbol	Parameter	Test Conditions	V _{CCA}	V _{CCB}	Temp.	Min	Тур	Max	Unit
	current		3.6V	5.5V	-40 to 85°C			±2	
			OM	0V to	25°C			±1	
т.	Partial power	A port	0V	5.5V	-40 to 85°C			±2	1.
I_{OFF}	down current	D	0V to	0V	25°C			±1	μA
		B port	5.5V	UV	-40 to 85°C			±2	
ī	Off-state Leakage	A D	1.65V to	2.3V to	25°C			±1	4
I_{OZ}	current	A or B port	3.6V	5.5V	-40 to 85°C			±2	μA
			1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C			2.8	
I_{QVCCA}	V _{CCA} Supply Current	$V_I = V_O = \text{open},$ $I_O = 0$	3.6V	0V	-40 to 85°C			2.2	μΑ
			0V	5.5V	-40 to 85°C			-1	
	V _{CCB} Supply Current		1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C			12	μА
$I_{QVCCB} \\$		$V_I = V_O = open,$ $I_O = 0$	3.6V	0V	-40 to 85°C			-1	
			0V	5.5V	-40 to 85°C			1	
IQVCCA + IQVCCB	Total Supply current	$V_I = V_O = open,$ $I_O = 0$	1.65V to 3.6V	2.3V to 5.5V	-40 to 85°C			14.4	μA
	Input		2.277	2.277	25°C		2.5		pF
C_{I}	Capacitance	OE	3.3V	3.3V	-40 to 85°C			4.8	
		A D 4	2.27	2.277	25°C		10		
		A or B port	3.3V	3.3V	-40 to 85°C				pF
C	Input-to-output		01/	OM	25°C		5		
C_{IO}	Capacitance	A port	0V	0V	-40 to 85°C		6		
		D nort	0V	O.I.I	25°C		6		
		B port	UV	0V	-40 to 85°C		7.5		

AC Electrical Characteristics

(Unless otherwise specified, -40°C \leq T_A \leq 85°C)

I/O test circuits of Figures 2, 3, 4 & 5, $C_{LOAD} = 15 pF$, $R_{LOAD} = 1 M\Omega$, input pulse generator having the following characteristics: $Z_O = 50\Omega$, PRR $\leq 10 MHz$, $dv/dt \geq 1 V / ns$

 $V_{CCA} \text{= } 1.8V \pm 0.15V$

a		T . C . 111	$V_{CCB} = 2$.	$5V \pm 0.2V$	$V_{CCB} = 3.3V \pm 0.3V$		$\mathbf{V}_{\mathrm{CCB}} = \mathbf{5.0V} \pm \mathbf{0.5V}$		TT *4
Symbol	Parameter	Test Conditions	Min	Max	Min	Max	Min	Max	Unit
	High to Low	Push-pull driving		5.3		5.4		6.8	
t _{PHL-A-B}	propagation delay	Open-Drain driving		8.8		9.6		10	ns
	Low to High	Push-pull driving		6.8		7.1		7.5	
t _{PLH-A-B}	propagation delay	Open-Drain driving		260		208		198	ns
	High to Low	Push-pull driving		4.4		4.5		4.7	
t _{PHL-B-A}	propagation delay	Open-Drain driving		5.3		4.4		4	ns
	Low to High	Push-pull driving		5.3		4.5		0.5	
t _{PLH} -B-A propagation delay	Open-Drain driving		175		140		102	ns	
ten	Enable Time	OE to A or B		200		200		200	ns
tdis	Disable Time	OE to A or B		230		230		230	ns
t	, D' T'	Push-pull driving	3.2	9.5	2.3	9.3	2	7.6	ns
t_{RA}	A port Rise Time	Open-Drain driving	32.8	165	27.9	132	20.5	95	
+	B port Rise Time	Push-pull driving	2.8	10.8	2.7	9.1	2.1	7.6	
t_{RB}	b port Rise Time	Open-Drain driving	30	145	23	106	10	58	ns
t	A E-11 Time	Push-pull driving	2	5.9	1.9	6	1.7	13.3	
t_{FA}	A port Fall Time	Open-Drain driving	3	6.9	3	6.4	3.1	6.1	ns
t	D most Foll Time	Push-pull driving	2.9	13.8	2.8	16.2	2.8	16.2	
t_{FB}	B port Fall Time	Open-Drain driving	3.1	13.8	3.2	16.2	3.9	16.2	ns
t _{PPSKEW}	Channel-to-Channel Skew			0.7		0.7		0.7	ns
f _{DATA}	Maximum Data Rate	Push-pull driving	21	-	22		24		Mbps
IDATA	iviaxiiiuiii Data Kate	Open-Drain driving	2	-	2		2		wiops

 $V_{CCA} = 2.5V + 0.2V$

g 1 1	D 4	T 4 G 114	$\mathbf{V}_{\mathrm{CCB}} = \mathbf{2.5V} \pm \mathbf{0.2V}$		$V_{\rm CCB} = 3.3 \rm V \pm 0.3 \rm V$		$V_{CCB} = 5.0V \pm 0.5V$		T 7 •4
Symbol	Parameter	Test Conditions	Min	Max	Min	Max	Min	Max	Unit
	High to Low	Push-pull driving		3.2		3.7		3.8	
t _{PHL-A-B}	propagation delay	Open-Drain driving		6.3		6		5.8	ns
t	Low to High	Push-pull driving		3.5		4.1		4.4	
t _{PLH-A-B}	propagation delay	Open-Drain driving		250		206		190	ns
+	High to Low	Push-pull driving		3		3.6		4.3	
t _{PHL-B-A}	propagation delay	Open-Drain driving		4.7		4.2		4	ns
+	Low to High	Push-pull driving		3.4		1.6		1	
t _{PLH-B-A}	propagation delay	Open-Drain driving		170		140		103	ns
ten	Enable Time	OE to A or B		200		200		200	ns
tdis	Disable Time	OE to A or B		230		230		230	ns
_	A Di Ti	Push-pull driving	2.8	7.4	2.6	6.6	1.8	5.6	ns
t_{RA}	A port Rise Time	Open-Drain driving	24.9	149	22.8	121	18.4	89	
+	D D: T:	Push-pull driving	2.7	8.3	2.4	7.2	2	6.1	
t_{RB}	B port Rise Time	Open-Drain driving	25.5	151	20.5	112	12	64	ns
+	A 4 E 11 T'	Push-pull driving	1.9	5.7	1.9	5.5	1.8	5.3	
t_{FA}	A port Fall Time	Open-Drain driving	2.9	6.9	2.9	6.2	2.9	5.8	ns
	D E-11 Time	Push-pull driving	2.2	7.8	2.4	6.7	2.6	6.6	
t_{FB}	B port Fall Time	Open-Drain driving	3	8.8	2.9	9.4	3.1	10.4	ns
t _{PPSKEW}	Channel-to-Channel Skew			0.7		0.7		0.7	ns
f_{DATA}	Maximum Data Rate	Push-pull driving	20		22		24		Mbps
IDATA	ivianiiiuiii Data Kate	Open-Drain driving	2		2		2		wiops

 V_{CCA} = 3.3 $V \pm 0.3V$

Dana	Tool Conditions	$V_{CCB} = 3.$	$.3V \pm 0.3V$	$V_{CCB} = 5.$	T I*4	
Parameter	Test Conditions	Min	Max	Min	Max	Unit
High to Low	Push-pull driving		2.4		3.1	
propagation delay	Open-Drain driving		4.2		4.6	ns
Low to High	Push-pull driving		4.2		4.4	
propagation delay	Open-Drain driving		204		165	ns
High to Low	Push-pull driving		2.5		3.3	
propagation delay	Open-Drain driving		124		97	ns
Low to High	Push-pull driving		2.5		2.6	
propagation delay	Open-Drain driving		139		105	ns
Enable Time	OE to A or B		200		200	ns
Disable Time	OE to A or B		230		230	ns
A Ti	Push-pull driving	2.3	5.6	1.9	4.8	
A port Rise Time	Open-Drain driving	17.4	116	15.4	85	ns
Donast Diag Time	Push-pull driving	2.5	6.4	2.1	7.4	
B port Rise Time	Open-Drain driving	17.7	116	11.8	72	ns
A . F 11 T	Push-pull driving	2	5.4	1.9	5	
A port Fall Time	Open-Drain driving	2.8	6.1	2.8	5.7	ns
D (EUT)	Push-pull driving	2.3	7.4	2.4	7.6	
t _{FB} B port Fall Time	Open-Drain driving	2.8	7.6	2.9	8.3	ns
Channel-to-Channel Skew			0.7		0.7	ns
Maximum Data Data	Push-pull driving	23		24		Mha
waximum Data Rate	Open-Drain driving	2		2		Mbps
	Low to High propagation delay High to Low propagation delay Low to High propagation delay Low to High propagation delay Enable Time Disable Time A port Rise Time A port Fall Time B port Fall Time Channel-to-Channel Skew	High to Low propagation delay Low to High propagation delay High to Low propagation delay High to Low propagation delay High to Low propagation delay Low to High propagation delay Low to High propagation delay Deen-Drain driving Push-pull driving Open-Drain driving Open-Drain driving Open-Drain driving Open-Drain driving Disable Time OE to A or B Push-pull driving Open-Drain driving Open-Drain driving Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving Open-Drain driving Open-Drain driving Open-Drain driving Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving Open-Drain driving Push-pull driving	High to Low propagation delay Low to High propagation delay High to Low propagation delay Deen-Drain driving Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving Disable Time OE to A or B Disable Time OE to A or B Push-pull driving Open-Drain driving 17.4 Push-pull driving Open-Drain driving 17.7 Push-pull driving Open-Drain driving A port Fall Time Push-pull driving Open-Drain driving Push-pull driving Open-Drain driving 2.8 Push-pull driving Open-Drain driving 2.8 Push-pull driving Open-Drain driving Open-Drain driving 2.8 Push-pull driving Open-Drain driving	High to Low propagation delay Push-pull driving Qpen-Drain driving 4.2	High to Low propagation delay Push-pull driving Qpen-Drain driving	High to Low propagation delay Push-pull driving Push-pull driving A.2 A.5

Test Circuits

Figure 2. Push-Pull Driving A

Figure 3. Push-Pull Driving B

Figure 4. Open-Drain Driving A

Figure 5. Open-Drain Driving B

Figure 6. Test Circuit for Enable/Disable Time Measurement

Figure 7. Timing Definitions for Propagation Delays and Enable/Disable Measurement

Functional Description

Level Translator Architecture

The LXS0102 is a 2-bit configurable dual supply bidirectional auto sensing translator that does not require a directional control pin. The A port operating voltage range is from 1.65 V to 3.6 V, and the B port operating voltage range is from 2.3 V to 5.5 V. Figure 8 shows its architecture.

The translator has integrated a 10 k Ω pull–up resistor on each I/O line. The integrated pull-up resistors are used to pull the I/O lines to either V_{CCA} or V_{CCB} . When OE goes low, the pull-up resistors are disabled. There is a NMOS transistor that connects the A-port and B-port. In addition, each output has integrated an one-shot rising edge detector to turn on the PMOS transistor within a short duration to improve the low-to-high transition.

Figure 8. Architecture of LXS0102 I/O Cell (one channel)

Input Driver Requirements

The rise (t_R) and fall (t_F) timing parameters of the open drain outputs depend on the magnitude of the pull-up resistors. In addition, the propagation times (t_{PD}) and maximum data rate depend on the impedance of the device that is connected to the translator. The timing parameters listed in the data sheet assume that the output impedance of the drivers connected to the translator is less than 50 Ω .

Output Enable and Disable (OE)

The LXS0102 has an Output Enable pin (OE) that enables the device by setting HIGH. Driving the Output Enable pin to a low logic level will minimize the power consumption of the device and set all I/Os in high-impedance OFF state. Normal translation operation occurs when the OE pin is equal to a logic high signal. The OE pin is referenced to the V_{CCA} supply.

Power Supply Guidelines

During normal operation, supply voltage V_{CCA} must be less than or equal to V_{CCB} . The sequencing of the power supplies will not damage the device during the power up operation. For optimal performance, 0.01 μF to 0.1 μF decoupling capacitors should be used on the V_{CCA} and V_{CCB} power supply pins. Ceramic capacitors are a good design choice to filter and bypass any noise signals on the voltage lines to the ground plane of the PCB. The noise immunity will be maximized by placing the capacitors as close as possible to the supply and ground pins, along with minimizing the PCB connection traces.

Part Marking

HK Package

V Package

xR: LXS0102VE 1st Y: Die Rev 2nd Y: Date Code

2nd Y: Date Code (Year) W: Date Code (Workweek) Bar above W means Cu wire

SS Package

xR: LXS0102SSE 1st Y: Die Rev

2nd Y: Date Code (Year) W: Date Code (Workweek) 1st X: Assembly Site Code 2nd X: Fab Site Code

Bar above 2nd "X" means Cu wire

GBA Package

xR: LXS0102GBAE Y: Date Code (Year) W: Date Code (Workweek)

Packaging Mechanical

8-DFN (HK)

DESCRIPTION: 8-Pin, X1-DFN1410-8

PACKAGE CODE: HK (HK8) DOCUMENT CONTROL#: PD-2264

20-0540

2. LAND PATTERN REFERENCE DIODES X2-DFN1410-8 PACKAGE INFORMATION

REVISION:--

8-VSSOP (V)

20-0546

8-SSOP (SS)

NOTE: 1. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES IN DEGREES.

Side View

A

- REFER JEDEC MO-187F/DA
 PACKAGE OUTLINE DIMENSIONS DO NOT INCLUDE MOLD FLASH AND METAL BURR.
 LAND PATTERN REFERENCE DIODES MSOP-8 PACKAGE INFORMATION.

DIODES	DATE: 03/02/21		
DESCRIPTION: 8-Pin, S	SOP-8L		
PACKAGE CODE: SS (SS8)		
DOCUMENT CONTROL :	REVISION: A		

21-1374

8-WLCSP (GBA)

21-0560

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Part Number	Package Code	Package Description
LXS0102HKEX	НК	8-pin, 1x1.4, X1-DFN1410-8 (DFN)
LXS0102VEX	V	8-pin (VSSOP)
LXS0102SSEX	SS	8-pin (SSOP)
LXS0102GBAEX	GBA	8-ball, 1.89x0.89 (WLCSP) (X1-WLB1909-8)

Notes:

- No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and
- Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- E = Pb-free and Green
- X suffix = Tape/Reel

IMPORTANT NOTICE

- DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-andconditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com