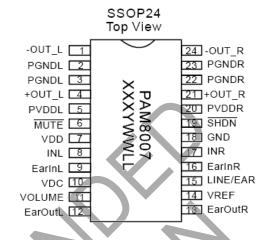
THE PAM8007 IS <u>NOT</u> RECOMMENDED FOR NEW DESIGNS. PLEASE USE THE PAM8019E.

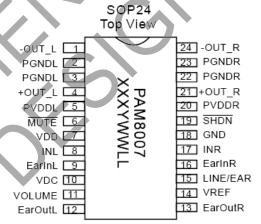
PAM8007

FILTERLESS 3W CLASS-D STEREO AUDIO AMPLIFIER WITH DC VOLUME CONTROL AND HEADPHONE OUTPUT

Description

The PAM8007 is a 3W, Class-D audio amplifier with headphone amplifier. Advanced 64-Step DC volume control minimizes external components and allows speaker volume control and headphone volume control. It offers low THD+N, to produce high-quality sound reproduction. The new filterless architecture allows the device to drive the speaker directly, without low-pass output filters which will save 30% system cost and 75% PCB area.

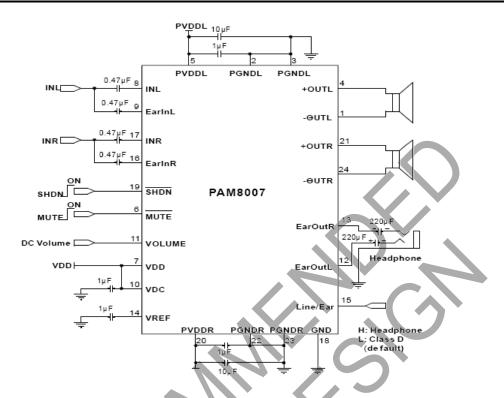

With the same numbers of external components, the efficiency of the PAM8007 is much better than class-AB cousins. It can extend the battery life thus be ideal for portable applications.


The PAM8007 is available in a SSOP-24 and SOP-24 package.

Features

- 3W Output at 10% THD with a 4Ω Load and 5V Power Supply
- Filterless, Low Quiescent Current and Low EMI
- Low THD+N
- 64-Step DC Volume Control
- Headphone Output Function
- Superior Low Noise
- Low Pop Noise
- Efficiency up to 92%
- **Short-Circuit Protection**
- Thermal Shutdown
- Few External Components to Save the Space and Cost
- Pb-Free Package
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

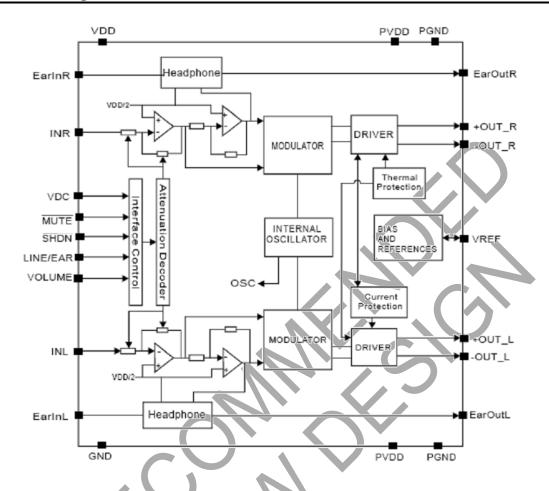
Pin Assignments



Applications

- LCD monitors/TV projectors
- Notebook computers
- Portable speakers
- Portable DVD players, game machines
- VoIP/speaker phones

Typical Applications Circuit



Pin Descriptions

T III Descript		
Pin Number	Pin Name	Function
1	-OUT_L	Left Channel Negative Output
2	PGNDL	Left Channel Power GND
3	PGNDL	Left Channel Power GND
4	+OUT_L	Left Channel Positive Output
5	PVDDL	Left Channel Power Supply
6	MUTE	Mute Control Input (active low)
7	VDD	Analog VDD
8	INL	Left Channel Input
9	EarInL	Left Earphone Input
10	VDC	Analog Reference for Gain Control Section
11	VOLUME	DC Volume Control to Set the Gain of Class-D
12	EarOutL	Left Earphone Output (Non-Inverting)
13	EarOutR	Right Earphone Output (Non-Inverting)
14	VREF	Internal Analog Reference, connect a bypass capacitor from VREF to GND
15	LINE/EAR	Line/Earphone Switch. Speaker Output (active low), Earphone Output (active high)
16	EarlnR	Right Earphone Input
17	INR	Right Channel Input
18	GND	Analog GND
19	SHDN	Shutdown Control Input (active low)
20	PVDDR	Right Channel Power Supply
21	+OUT_R	Right Channel Positive Output
22	PGNDR	Right Channel Power GND
23	PGNDR	Right Channel Power GND
24	-OUT_R	Right Channel Negative Output

Functional Block Diagram

Absolute Maximum Ratings (@TA = +25°C, unless otherwise specified.)

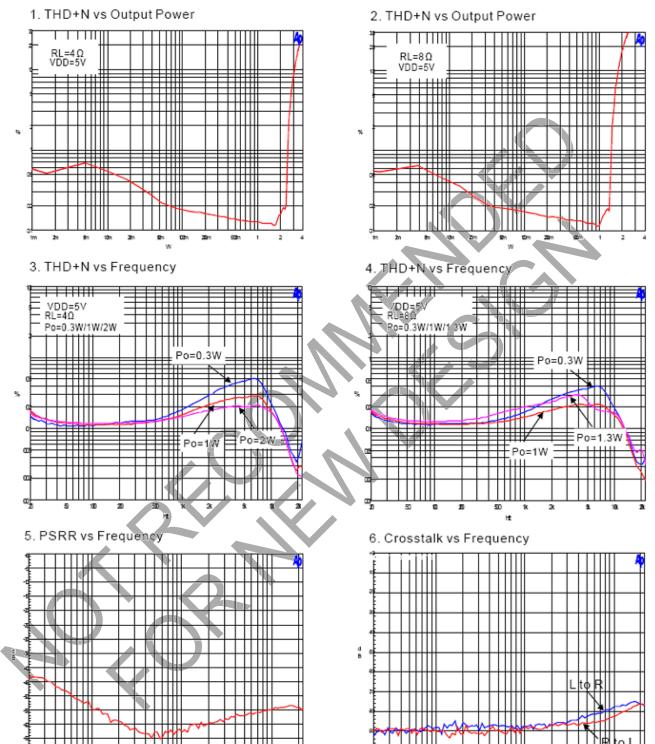
These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

Parameter	Rating	Unit
Supply Voltage	6.0	V
Input Voltage	-0.3 to V _{DD} +0.3	V
Maximum Junction Temperature	+150	
Storage Temperature	-65 to +150	°C
Soldering Temperature	+300, 5sec	

Recommended Operating Conditions (@TA = +25°C, unless otherwise specified.)

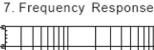
Parameter	Rating	Unit
Supply Voltage Range	2.5 to 5.5	V
Ambient Operation Temperature Range	-20 to +85	°C
Junction Temperature Range	-20 to +125	°C

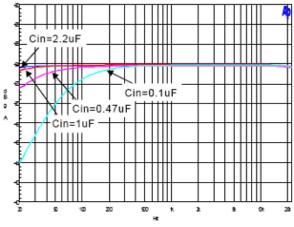
Thermal Information

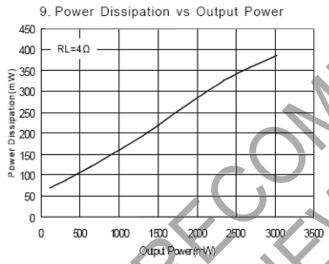

Parameter	Package	Symbol	Max	Unit	
Thermal Desistance (Junation to Ambient)	SSOP-24	0	90		
Thermal Resistance (Junction to Ambient)	SOP-24	θJA	79.2	°C/W	
Thermal Desistance / Innetion to Cook)	SSOP-24	0	32	- C/VV	
Thermal Resistance (Junction to Case)	SOP-24	θιс	27		

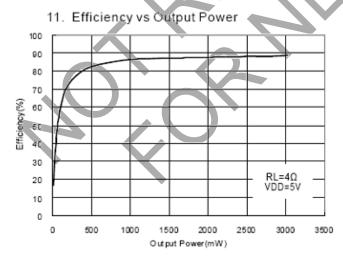
Electrical Characteristics (@ $T_A = +25$ °C, $V_{DD} = 5V$, Gain = 24dB, $R_L = 8\Omega$, unless otherwise specified.)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Units
Class D Stage							
Supply Voltage Range	V _{DD}	_		2.5	_	5.5	V
Quiescent Current	ΙQ	No Load			12	16	mA
Output Offset Voltage	Vos	No Load		-	10	50	mV
Drain-Source On-State Resistance	RDS(ON)	IDS = 0.5A	P MOSFET N MOSFET	V -	0.23 0.17		Ω
Output Power	Po	THD+N = 10% f = 1kHz	$R_{L} = 8\Omega$ $R_{L} = 4\Omega$	1.55 2.85	1.75 3.1	<u> </u>	W
Total Harmonic Distortion Plus Noise	THD+N	$R_L = 8\Omega$, $P_O = 1W$, $f = R_L = 4\Omega$, $P_O = 2W$, $f = R_L = 4\Omega$			0.12 0.15		%
Power Supply Ripple Rejection	PSRR	Input AC-GND, f = 1kl	Hz , $V_{PP} = 200 \text{mV}$		63		dB
Channel Separation	CS	$V_0 = 1V_{RMS}, f = 1kHz$	• () '		-88	_	dB
Oscillator Frequency	fosc	- 11		200	250	300	kHz
E#isiana.		Po = 1.75W, f = 1kHz,	R _L = 8Ω	85	92	_	%
Efficiency	η	$P_{O} = 3.0W, f = 1kHz, I$	$R_L = 4\Omega$	80	88	_	%
Noise	7,	Input AC-GND	A-Weighting	_	65	_	\/
Noise V _N Ga		Gain = 12dB No A-Weighting		_	90	_	μV
Signal Noise Ratio	SNR	f = 20 to 20kHz, THD = 1%			84	_	dB
Earphone Stage							
Output Power	Po	THD+N = 1%, RL = 32Ω , f = 1kHz		_	69	_	mW
Total Harmonic Distortion Plus Noise	THD+N	$R_L = 32\Omega$, $P_O = 10$ mW	/, f = 1kHz	_	0.04	_	%
Power Supply Ripple Rejection	PSRR	Input AC-GND, f = 1kl	Hz , $V_{PP} = 200 \text{mV}$	_	73	_	dB
Channel Separation	CS	$V_0 = 1V_{RMS}$, $f = 1kHz$		_	95	_	dB
Noise	VN	Input	A-Weighting	_	19	_	μV
IVUISE	VIV	AC-GND	No A-Weighting	_	25	_	μν
Signal Noise Ratio	SNR	f = 20 to 20kHz, THD	= 1%	_	97	_	dB
Control Section							
Mute Current	Імите	V _{MUTE} = 0V		_	8	12	mA
Shutdown Current	Ishdn	Vshdn = 0V		_	_	20	μΑ
SHDN Input High	VsH	_		1.5	_	_	V
SHDN Input Low	VsL	_				0.4	٧
MUTE Input High	Vмн	_		1.5	_	_	V
MUTE Input Low	V _M L			_	_	0.4	٧
Line/Ear Input High	V _{DH}	_		2.5			V
Line/Ear Input Low	V_{DL}					0.4	V
Overtemperature Protection	OTP	_			+150	_	°C
Overtemperature Hysteresis	OTH	_		_	+30		°C

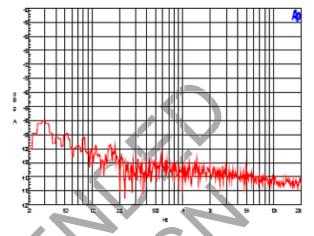


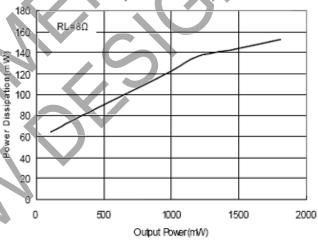

Speaker

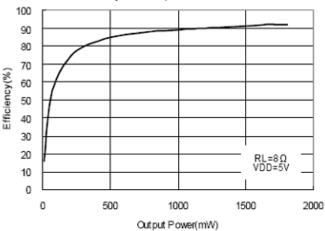




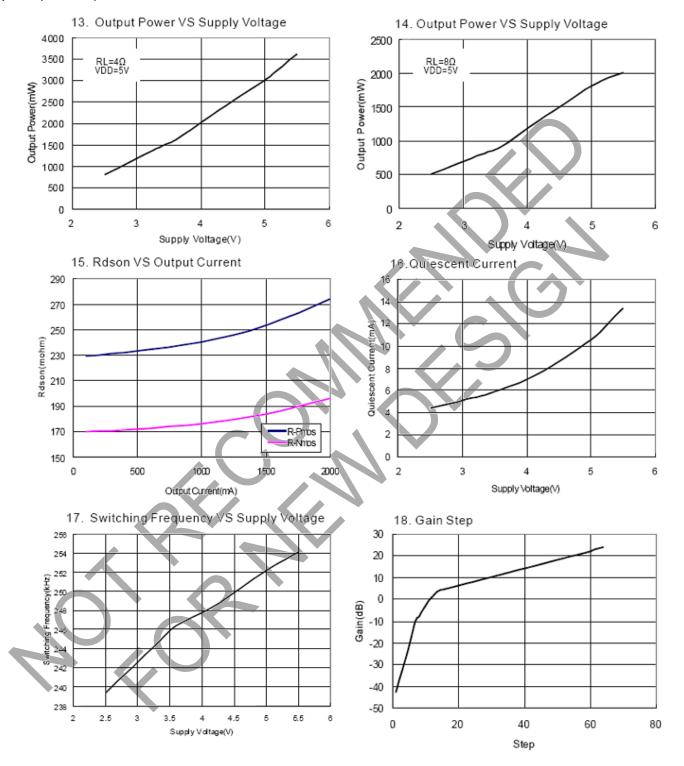
Speaker



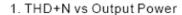


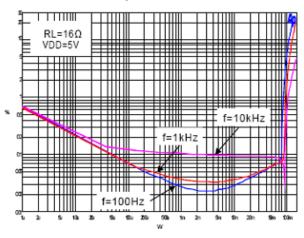

8. Noise Floor

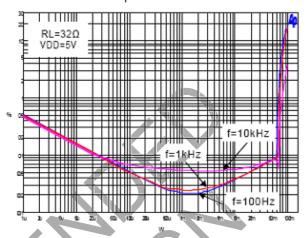
10. Power Dissipation vs Output Power



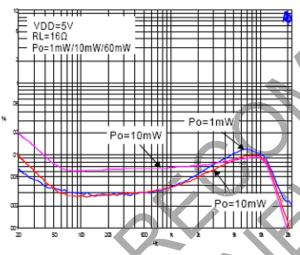
Efficiency vs Output Power

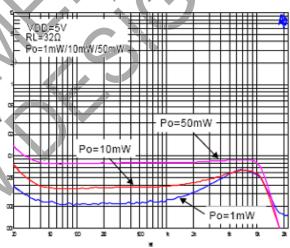


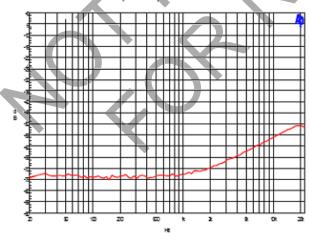

Speaker (continued)

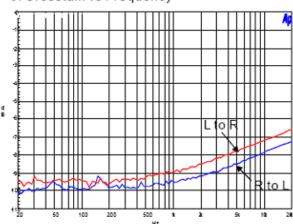


Earphone Output

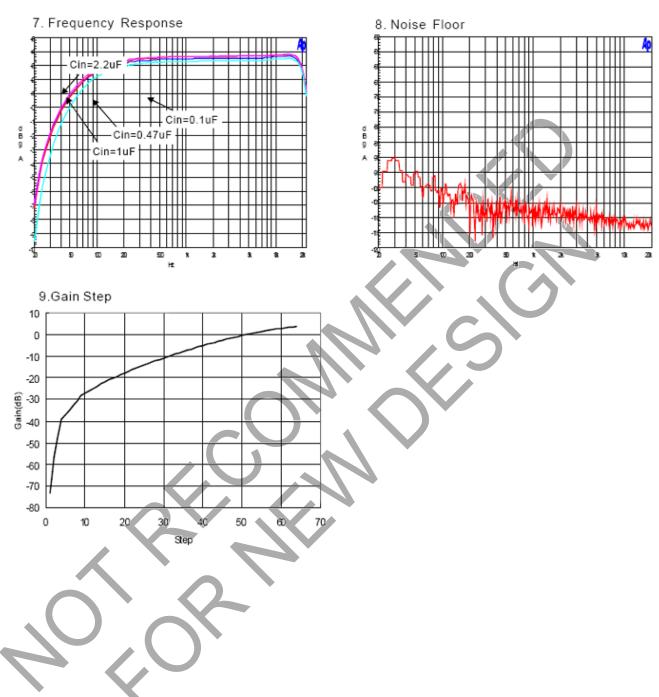



2. THD+N vs Output Power


3. THD+N vs Frequency


. THD+N vs Frequency

5. PSRR vs Frequency



Crosstalk vs Frequency

Earphone Output (continued)

Table 1. DC Volume Control

STEP	Gain (dB) Class D	Gain (dB) Earphone		STEP	Gain (dB) Class D	Gain (dB) Earphone
1	-80	-80		33	11.6	-9.2
2	-40	-60		34	12.0	-8.6
3	-34	-50		35	12.4	-8.0
4	-28	-40		36	12.8	-7.4
5	-22	-37.7		37	13.2	-6.8
6	-16	-35.4		38	13.6	-6.2
7	-10	-33.1		39	14.0	-5.7
8	-7.5	-30.8		40	14.4	-5.2
9	-5	-28.5		41	14,8	-4.7
10	-2.5	-27.5		42	15.2	-4.2
11	0	-26.4		43	15.6	-3.7
12	1.5	-25.3		44	16.0	-3.2
13	3.0	-24.2		45	16.4	-2.7
14	4.0	-23.1		46	16.8	-2.2
15	4.4	-22.2		47	17.2	-1.8
16	4.8	-21.4		48	17.6	-1.4
17	5.2	-20.6		49	18.0	-1.0
18	5.6	-19.8	7	50	18.4	-0.6
19	6.0	-19.0		51	18.8	-0.2
20	6.4	-18.2		52	19.2	0.2
21	6.8	-17.4		53	19.6	0.6
22	7.2	-16.6		54	20.0	0.9
23	7.6	-15.9		55	20.4	1.2
24	8.0	-15.2		56	20.8	1.5
25	8.4	-14.5		57	21.2	1.8
26	8.8	-13.8		58	21.6	2.1
27	9.2	-13.1		59	22.0	2.4
28	9.6	-12.4		60	22.4	2.7
29	10.0	-11.7		61	22.8	2.9
30	10.4	-11.0		62	23.2	3.1
31	10.8	-10.4		63	23.6	3.3
32	11.2	-9.8		64	24.0	3.5

Application Information

Mute Operation

The MUTE pin is an input for controlling the output state of the PAM8007. A logic low on this pin disables the outputs, and a logic high on this pin enables the outputs. This pin may be used as a quick disable or enable of the outputs without a volume fade. Quiescent current is listed in the Electrical Characteristics table. The MUTE pin can be left floating due to the internal pullup.

For the best power on/off pop performance, the amplifier should be placed in the MUTE mode prior to turning on/off the power supply.

Shutdown Operation

In order to reduce power consumption while not in use, the PAM8007 contains shutdown circuitry to turn off the amplifier's bias circuitry. The amplifier is turned off when logic low is placed on the SHDN pin. By switching the SHDN pin connected to GND, the PAM8007 supply current draw will be minimized in idle mode. The SHDN pin can be left floating due to the internal pullup.

Line/Ear Operation

In order to control the speaker/headphone switch, the PAM8007 contains detect circuitry. When line/ear logic low, speaker active; when logic high, earphone active.

Power Supply Decoupling

The PAM8007 is a high-performance CMOS audio amplifier that requires an adequate power supply decoupling to ensure the output THD and PSRR are as low as possible. Power supply decoupling affects low frequency on the power supply leads for higher frey response. Optimum decoupling is achieved by using two capacitors of different types that target different types of noise frequency transients, spike, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 1.0µF, placed as close as possible to the device VDD terminal works best. For filtering lower-frequency noise signals, a large capacitor of 10µF (ceramic) or greater placed near the audio power amplifier is recommended.

Input Capacitor (C_I)

Large input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 100Hz to 150Hz. Thus, using a large input capacitor may not increase actual system performance. In this case, inout capacitor (C_I) and input resistance (R_I) of the amplifier form a high-pass filter with the corner frequency determined equation below:

$$f_C = \frac{1}{2\Pi R_1 C_1}$$

In addition to system cost and size, click and pop performance is affected by the size of the input coupling capacitor, Ci. A larger inout coupling capacitor requires more charge to reach its quiescent DC voltage (nominally ½ VDD). This charge comes from the internal circuit via the feedback and is apt to create pops upon device enable. Thus, by minmizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized.

Analog Reference Bypass Capacitor (CBYP)

Analog Reference Bypass Capacitior (Caye) is the most critical capacitor and serves several important functions. During startup or recovery from shutdown mode, CBYP determines the rate at which the amplifier starts up. The second function is to reduce noise produced by the power supply caused by coupling into the output device signal. The noise is from the internal analog reference to the amplifier, which appears as degraded PSRR and THD+N.

A ceramic bypass capacitor (CBYP) of 0.47µF to 1.0µF is recommended for the best THD and noise performance. Increasing the bypass capacitor reduces clicking and popping noise from power on/off and entering and leaving shutdown.

Short-Circuit Protection (SCP)

The PAM8007 has short-circuit protection circuitry on the outputs that prevents the device from damage when output-to-output and output-to GND short. When a short circuit is detected on the outputs, the outputs are disabled immediately. If the short was removed, the device is activated again.

11 of 17 PAM8007 July 2024 Document number: DS36430 Rev. 2 - 3 www.diodes.com © 2024 Copyright Diodes Incorporated. All Rights Reserved

Application Information (continued)

Overtemperature Protection

Thermal protection on the PAM8007 prevents the device from damage when the internal die temperature exceeds +150°C. There is a 15 degree tolerance on this trip point from device to device. Once the die temperature exceeds the thermal set point, the device outputs are disabled. This is not a latched fault. The thermal fault is cleared once the temperature of the die is reduced by +30°C. This large hysteresis will prevent motor boating sound well. The device begins normal operation at this point without external system interaction.

How to Reduce EMI (Electromagnetic Interference)

A simple solution is to put an additional capacitor 1000µF at power supply terminal for power line coupling if the traces from amplifier to speakers are short (< 20CM).

Most applications require a ferrite bead filter as shown at Figure 1. The ferrite filter reduces EMI around 1MHz and higher. When selecting a ferrite bead, choose one with high impedance at high frequencies, and low impedance at low frequencies (MH2012HM221-T).

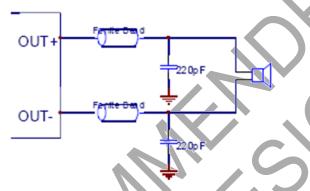


Figure 1. Ferrite Bead Filter to Reduce EMI

PCB Layout Guidelines Grounding

At this stage it is paramount to notice the necessity of separate grounds. Noise currents in the output power stage need to be returned to output noise ground and nowhere else. Were these currents to circulate elsewhere, they may get into the power supply, the signal ground, etc, worse yet, they may form a loop and radiate noise. Any of these cases results in degraded amplifier performance. The logical returns for the output noise currents associated with Class D switching are the respective PGND pins for each channel. The switch state diagram illustrates that PGND is instrumental in nearly every switch state. This is the perfect point to which the output noise ground trace should return. Also note that output noise ground is channel specific. A two-channel amplifier has two seperate channels and consequently must have two seperate output noise ground traces. The layout of the PAM8007 offers separate PGND connections for each channel and in some cases each side of the bridge. Output noise grounds must be tied to system ground at the power in exclusively. Signal currents for the inputs, reference, etc need to be returned to quite ground. This ground is only tied to the signal components and the GND pin, and GND then tied to system ground.

PCB Layout Example

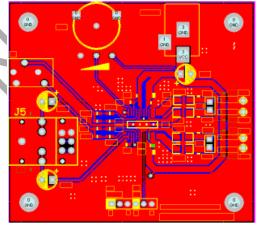
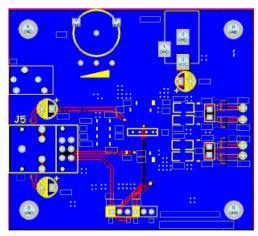
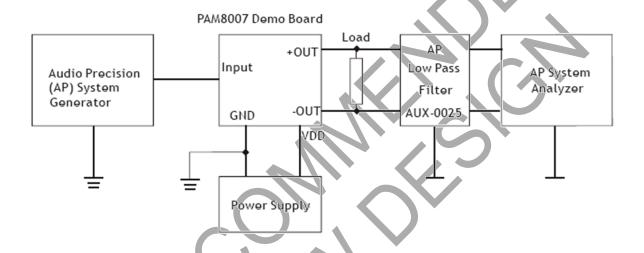


Figure 2. Top Layer

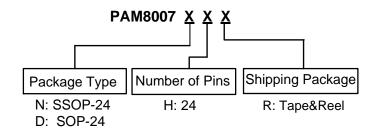



Figure 3. Bottom Layer

Application Information (continued)

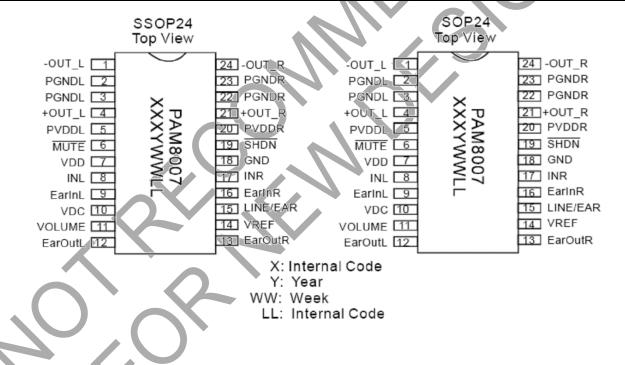
Test Setup for Performance Testing (Class D)

- 1. When the PAM8007 works with LC filters, it should be connected with the speaker before it is powered on, otherwise it will be damaged easily.
- When the PAM8007 works without LC filters, it is better to add a ferrite chip bead at the outgoing line of speaker for suppressing the possible 2. electromagnetic interference.
- The absolute maximum rating of the PAM8007 operation voltage is 6.0V. When the PAM8007 is powered with four battery cells, it should be 3. noted that the voltage of four new dry or alkaline batteries is over 6V, higher than its maximum operation voltage, which probably make the device damaged. Therefore, it's recommended to use either four Ni-MH (Nickel Metal Hydride) rechargeable batteries or three dry or alkaline
- The input signal should not be too high, if too high, it will cause the clipping of output signal when increasing the volume. Because the DC 4. volume control of the PAM8007 has big gain, it will make the device damaged.
- When testing the PAM8007 without LC filters by using resistor instead of speaker as the output load, the test results, e.g. THD or efficiency, 5. will be worse than those using speaker as load.


Notes:

- 1. The Audio Precision (AP) AUX-0025 low pass filter is necessary for class-D amplifier measurement with AP analyzer.
- 2. Two 22µH inductors are used in series with load resistor to emulate the small speaker for efficiency measurement.

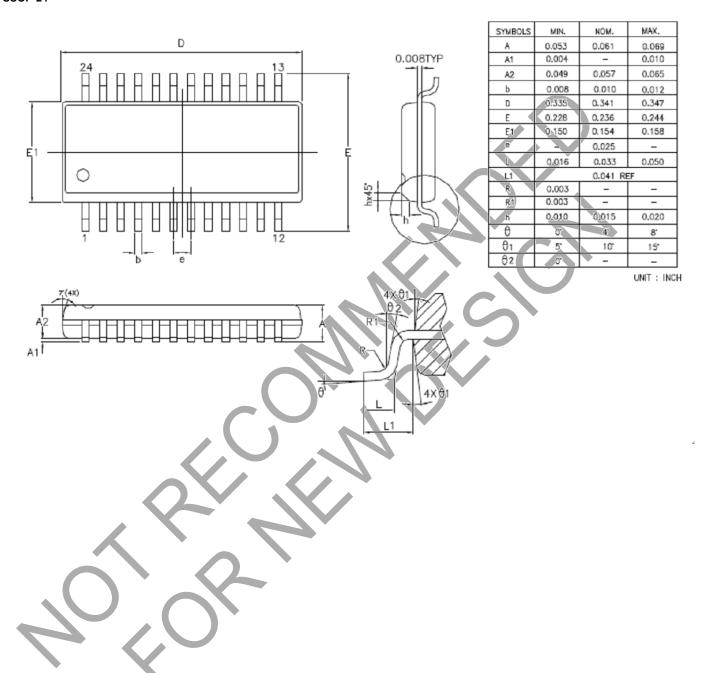
13 of 17 PAM8007 July 2024 © 2024 Copyright Diodes Incorporated. All Rights Reserved. www.diodes.com



Ordering Information

Part Number	Pankaga	Packing			
Fait Number	Package	Qty.	Carrier		
PAM8007NHR	SSOP-24	2500 Units	Tape & Reel		
PAM8007DHR	SOP-24	1000 Units	Tape & Reel		

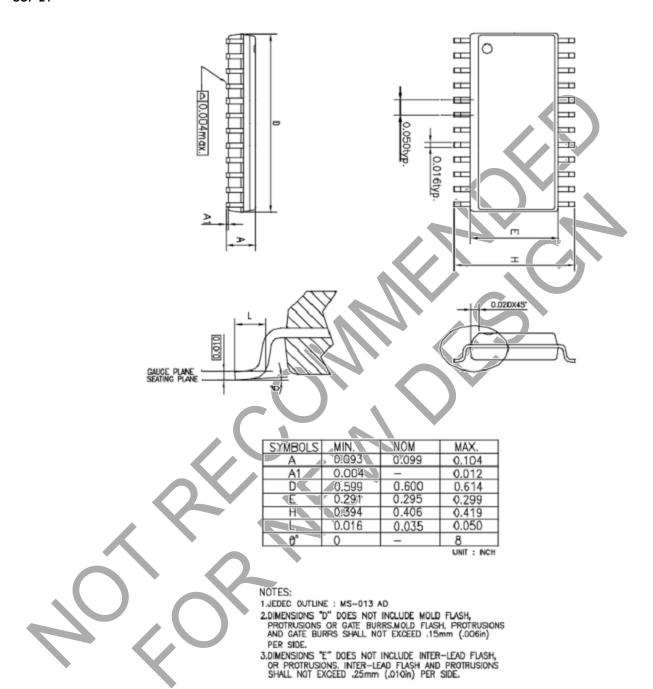
Marking Information



Package Outline Dimensions (All dimensions in mm.)

Please see http://www.diodes.com/package-outlines.html for the latest version.

SSOP-24



Package Outline Dimensions (continued) (All dimensions in mm.)

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOP-24

IMPORTANT NOTICE

- DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functionalsafety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- Conditions products provided subject to Diodes' Standard (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-andconditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com

17 of 17 PAM8007 July 2024 © 2024 Copyright Diodes Incorporated. All Rights Reserved. www.diodes.com