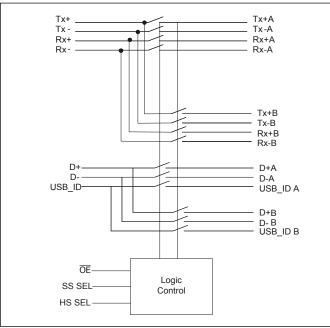
OBSOLETE - PART DISCONTINUED

A product Line of Diodes Incorporated


PI3USB3102Q

Automotive USB3.0 and USB2.0 Combo Switch

Features

- → AEC-Q 100 Qualified
- → 1:2 mux/demux for USB 3.0SS, 2.0HS, and 2.0FS signals
- → Switches Tx, Rx, Dx, and USB_ID from USB3.0 connector
- → Insertion Loss for superspeed channels @ 2.5 GHz: -1.7dB
- → -3dB Bandwidth for superspeed channels: 4.7GHz
- → Return loss for superspeed channels @ 2.5GHz: -16dB
- → Low Bit-to-Bit Skew, 7ps max (between '+' and '-' bits)
- → Low Crosstalk for superspeed channels: -25dB@5.0 Gbps
- → Low Off Isolation for superspeed channels: -25dB@5.0 Gbps
- → V_{DD} Operating Range: 3.3V +/-10%
- → ESD Tolerance: 2kV HBM
- → Low channel-to-channel skew, 35ps max
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → Packaging (Pb-free & Green):
 □ 32 TOFN (ZL)

Block Diagram

Description

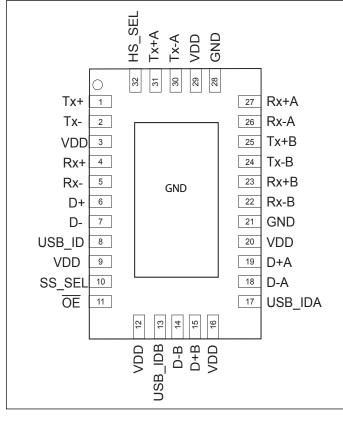
Diodes' PI3USB3102Q USB3.0 and USB2.0 Combo Switch is a complete 1:2 switching solution for SuperSpeed USB 3.0 signals. PI3USB3102Q provides differential high-speed lanes for the USB3.0 4.8 Gbps TX and RX lanes as well as a differential lane for 480 Mbps USB 2.0 signals and the USB_ID signal.

PI3USB3102Q can be used to connect two hosts to a single device or a single host to two devices.

PI3USB3102Q offers excellent signal integrity for high-speed signals and low power dissipation. Insertion loss is 1.7 dB and return loss is -16 dB at 2.5 GHz. Power dissipation is 6.6 mW maximum.

Application

Routing of USB3.0 signals with low signal attenuation between source and sink.


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Assignment (TQFN-32)

Truth Table

ŌĒ	SS_SEL	HS_SEL	Function
Low	Low	Low Port A active for all channe	
Low	Low	High	Port A for SS, port B for HS and ID
Low	High	Low	Port B for SS, port A for HS and ID
Low	High	High	Port B active for all channels
High	х	х	I/O's are hi-z and IC is power down

Pin Description

Pin#	Pin Name	Signal Type	Description
1	Tx+	I/O	positive differential USB3.0 Tx signal for COM port
2	Tx-	I/O	negative differential USB3.0 Tx signal for COM port
3	VDD	Power	3.3V +/-10% power supply
4	Rx+	I/O	positive differential USB3.0 Rx signal for COM port
5	Rx-	I/O	negative differential USB3.0 Rx signal for COM port
6	D+	I/O	positive differential USB2.0 signal for COM port
7	D-	I/O	negative differential USB2.0 signal for COM port
8	USB_ID	I/O	USB_ID for COM port
9	VDD	Power	3.3V +/-10% power supply
			switch logic control for SuperSpeed Path
10	SS_SEL	I	If HIGH, then path B is selected for SuperSpeed channels only If LOW, then path A is selected for SuperSpeed channels only
11	ŌĒ	Ι	Output enable. if \overline{OE} is low, IC is enabled. If \overline{OE} is high, then IC is power down and all I/Os are hi-z
12	VDD	Power	3.3V +/-10% power supply
13	USB_IDB	I/O	USB_ID for port B
14	D-B	I/O	negative differential USB2.0 signal for port B
15	D+B	I/O	positive differential USB2.0 signal for port B
16	VDD	Power	3.3V +/-10% power supply
17	USB_IDA	I/O	USB_ID for port A
18	D-A	I/O	negative differential USB2.0 signal for port A
19	D+A	I/O	positive differential USB2.0 signal for port A
20	VDD	Power	3.3V +/-10% power supply
21	GND	Ground	Ground
22	Rx-B	I/O	negative differential USB3.0 Rx signal for port B
23	Rx+B	I/O	positive differential USB3.0 Rx signal for port B
24	Tx-B	I/O	negative differential USB3.0 Tx signal for port B
25	Tx+B	I/O	positive differential USB3.0 Tx signal for port B
26	Rx-A	I/O	negative differential USB3.0 Rx signal for port A
27	Rx+A	I/O	positive differential USB3.0 Rx signal for port A
28	GND	Ground	Ground
29	VDD	Power	3.3V +/-10% power supply
30	Tx-A	I/O	negative differential USB3.0 Tx signal for port A
31	Tx+A	I/O	positive differential USB3.0 Tx signal for port A
			switch logic control for USB2.0 (D+/-) and USB_ID path
32	HS_SEL	I	If High, path B is selected
			If LOW, path A is selected

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +4.2V
DC Input Voltage	–0.5V to V _{DD}
DC Output Current	120mA
Power Dissipation	0.5W
ESD:	
HBM per AEC-Q 100-002 (All Pins)	2000V
CDM per AEC-Q 100-011 (All Pins)	250V

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for Switching over Operating Range

 $(TA = -40^{\circ}C \text{ to } +85^{\circ}C, VDD = 3.3V \pm 10\%)$

Parameter	Description	Test Conditions ⁽¹⁾	Min.	Typ.(1)	Max.	Units
VIH	Input HIGH Voltage	Guaranteed HIGH level	1.5			
VIL	Input LOW Voltage	Guaranteed LOW level			0.75	V
V _{IK}	Clamp Diode Voltage, Dx	V_{DD} = Max., I_{IN} = -18mA		-0.8	-1.1	
IIH	Input HIGH Current	$V_{DD} = Max., V_{IN} = V_{DD}$			±5	
IIL	Input LOW Current	V _{DD} = Max., V _{IN} = GND			±5	μA
I _{OFF_HS/ID}	I/O leakage when part is off for D+, D- and USB_ID signals only	$V_{DD} = 0V$, $V_{INPUT} = 0V$ to 3.6V			20	
R _{ON_SS}	On resistance between input to out- put for SuperSpeed signals	$V_{DD} = 3.3V$, Vinput = 0V to 1V, I _{INPUT} = 20mA		10	13	Ohm
R _{ON_FS}	On resistance between input to out- put for USB2.0 FS signals (D+/D-)	$V_{DD} = 3.3V$, Vinput = 0 to 3.3V, $I_{INPUT} = 20mA$		7	9	Ohm
R _{ON_HS}	On resistance between input to out- put for USB2.0 HS signals (D+/D-)	V_{DD} = 3.3V, Vinput = -0.4V to +0.4V, I_{INPUT} = 20mA		4	6	Ohm
USB_ID_I	Input voltage tolerance on USB_ID path				5.5	V
USB_ID_O	Output voltage on USB_ID path	USB_ID input from 0V to 5.25V			3.6	V

Power Supply Characteristics (TA = $-40^{\circ}C$ to $+85^{\circ}C$)

Parameter	Description	Test Conditions ⁽¹⁾	Min.	Typ.(1)	Max.	Units
I _{CC}	Quiescent Power Supply Current	V_{DD} = Max., V_{IN} = GND or V_{DD}			2	mA

Dynamic Electrical Characteristics over Operating Range ($TA = -40^{\circ}$ to $+85^{\circ}C$, $VDD = 3.3V \pm 10\%$)

Parameter	Description	Test Conditions		Тур.	Max.	Units
X _{TALK}	Crosstalk on SuperSpeed Channels	See Fig. 1 for Measurement Setup	f= 2.5 GHz	-25dB		dB
O _{IRR}	OFF Isolation on SuperSpeed Channels	See Fig. 2 for Measurement Setup		-22dB		dБ
I _{LOSS}	Differential Insertion Loss on SuperSpeed Channels	@5.0Gbps (see figure 3)		-1.7		dB
R _{loss}	Differential Return Loss on SuperSpeed channels	@ 2.5GHz		-16		dB
BW_SS	Bandwidth -3dB for SuperSpeed path (Tx±/ Rx±)	See figure 3		4.7		GHz
BW_HS	-3dB BW for USB high speed path (D+/-)	See figure 3		1.5		GHz
Tsw a-b	time it takes to switch from port A to port B				1	us
Tsw b-a	time it takes to switch from port B to port A				1	us
Tstartup	Vdd valid to channel enable				10	us
Twakeup	Enabling output by changing \overline{OE} from low to High				10	us

Note:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at V_{DD} = 3.3V, T_A = 25°C ambient and maximum loading.

Switching Characteristics (T_A= -40° to +85°C, V_{DD} = 3.3V±10%)

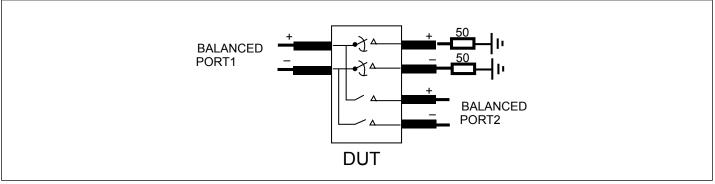

Parameter	Description		Тур.	Max.	Units
T _{pd}	Propagation delay (input pin to output pin)		80		ps
t _{b-b}	Bit-to-bit skew within the same differential pair		5		ps
t _{ch-ch}	Channel-to-channel skew			35	ps

Fig 1. Crosstalk Setup

Fig 2. Off-isolation setup

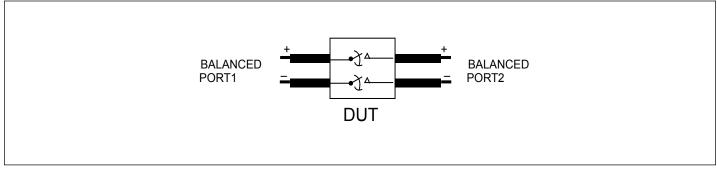


Fig 3. Differential Insertion Loss set up

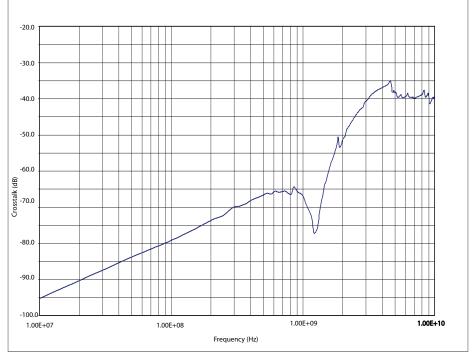


Fig 4. Xtalk for SuperSpeed channels (Tx/Rx)

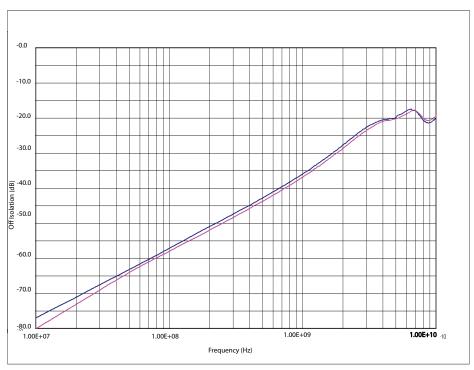


Fig 5. Off Isolation for SuperSpeed channels (Tx/Rx). Red is for path B and Blue is for path A

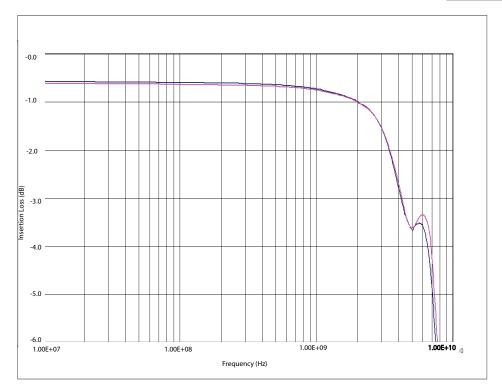
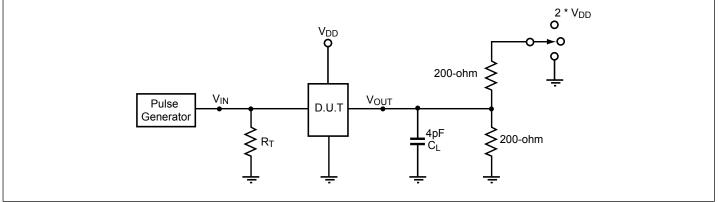
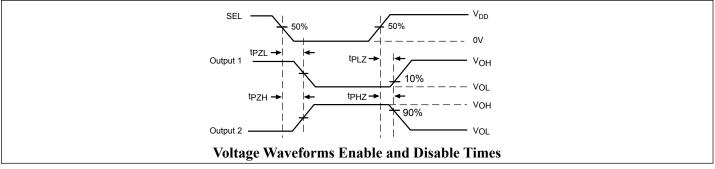
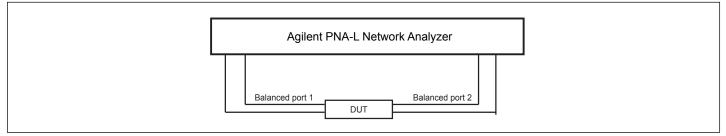



Fig 6. Insertion Loss for SuperSpeed channels (Tx/Rx). Red is for path B and Blue is for path A

Test Circuit for Electrical Characteristics⁽¹⁻⁵⁾


Notes:

- 1. C_L = Load capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- 4. Output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 5. All input impulses are supplied by generators having the following characteristics: PRR \leq MHz, $Z_O = 50\Omega$, $t_R \leq 2.5$ ns, $t_F \leq 2.5$ ns.
- 6. The outputs are measured one at a time with one transition per measurement.


Switching Waveforms

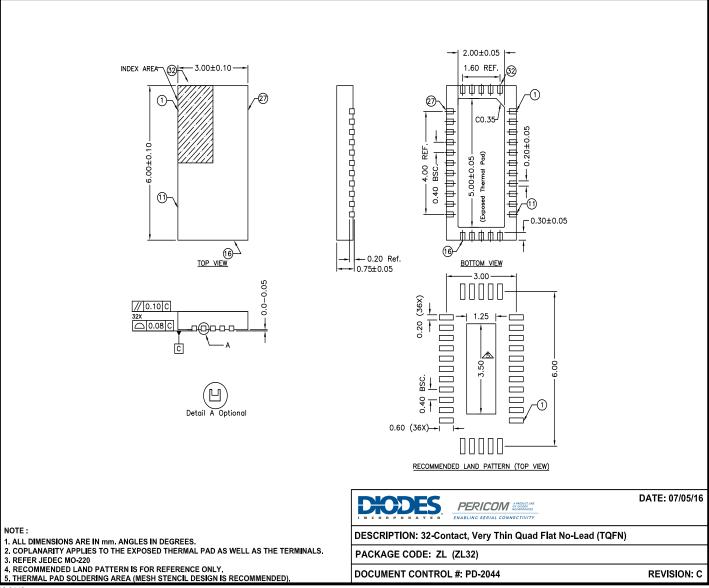
Switch Positions

Test	Switch
t_{PLZ} , t_{PZL} (output on B-side)	2 * Vdd
t _{PHZ} , t _{PZH} (output on B-side)	GND
Prop Delay	Open

Test Circuit for Dynamic Electrical Characteristics

Part Marking

ZL Package



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Site Code

Packaging Mechanical: 32-TQFN (ZL)

16-0142

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description		
PI3USB3102QZLEX	ZL	32-Contact, Very Thin Quad Flat No-Lead (TQFN)		

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

- antimony compounds.
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND. EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com