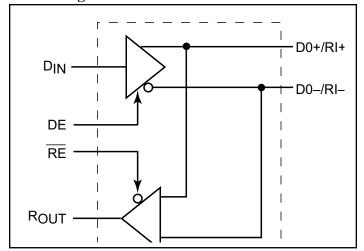
DISTCONTINUED - PLEASE USE PI90LV01

PI90LVB010

Single Bus LVDS Transceiver

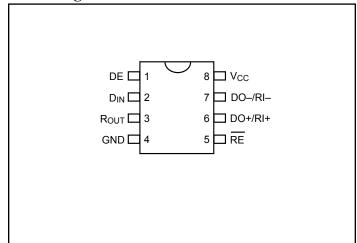
Features

- Bus LVDS Signaling (BLVDS)
- Designed for Double Termination Applications
- Balanced Output Impedance
- · Light Bus Loading: 5pF typical
- Glitch-free power up/down (Driver Disabled)
- Operates from a 3.3V supply
- High Signaling Rate Capability: >100Mbps
- Driver:
 - $-\pm 250$ mV Differential Swing into a 27Ω load
 - Propagation Delay of 1.5ns typ.
 - Low Voltage TTL (LVTTL) Inputs are 5V Tolerant
- Receiver
 - Accepts ±50mV (min.) Differential Swing with up to 2.0V ground potential difference
 - Propagation Delay of 3.3ns typical
 - Low Voltage TTL (LVTTL) Outputs
 - Open, Short, and Terminated Fail Safe
- Bus terminal ESD exceeds 10kV
- Industrial Temperature Operation (-40°C to +85°C)
- Packaging (Pb-free & Green available):
 - 8-lead SOIC (W)
 - 8-lead MSOP (U)


Description

The PI90LVB010 is a differential line driver and receiver (transceiver) that is similar to the IEEE1596.3 SCI and ANSI/TIA/EIA-644LVDS standards, the difference is that the driver output current is higher. This modification enables true half-duplex operation with more than one LVDS driver or with two line transmission resistors over a 50Ω differential transmission line. To minimize bus loading, the driver outputs and receiver inputs are internally connected. The logic interface provides maximum flexibility resulting from four separate lines that are provided: D_{IN} , DE, \overline{RE} , and R_{OUT} .

This device also feature flow-through which allows easy PCB routing for short stubs between the bus pins and the connector. The driver has 10mA drive capability, allowing it to drive heavily loaded backplanes, with impedance as low as 27Ω .


The driver translates between TTL levels (single-ended) to Low Voltage Differential Signaling levels. This allows for high-speed operation, while consuming minimal power with reduced EMI. In addition the differential signaling provides common mode noise rejection of $\pm 1 \text{V}$.

Block Diagram

Pin Configuration

1

4/20/11

DISTCONTINUED - PLEASE USE PI90LV01

PI90LVB010 Single Bus LVDS Transceiver

Absolute Maximum Ratings(1,2)

Storage Temperature Range		-65°C to +150°C
Lead Temperature Range (So	oldering, 4s)	+260°C

Recommended Operating Conditions

	Min.	Max.	Units
Supply Voltage (V _{CC})	3.0	3.6	V
Receiver Input Voltage	0.0	2.9	V
Operating Free-Air Temperature	-40	+85	°C

Note:

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2

Functional Mode

Mode Select	DE	RE
Driver Mode	Н	Н
Receiver Mode	L	L
3-State Mode	L	Н
Loop Back Mode	Н	L

Transmitter Mode

Inputs		Outputs		
DE	DI	DO+	DO-	
Н	L	L	Н	
Н	Н	Н	L	
Н	2 > & > 0.8	X	X	
L	X	Z	Z	
Н	Open	L	Н	

Receiver Mode

Inputs		Outputs
RE (RE+) - (RI-)		R _{OUT}
L	L (< -100mV)	L
L	H (> + 100mV)	Н
L	100mV > & >-100mV	?
Н	X	Z

Notes:

1. H = High, L = Low, Z = High Impedance, X = High or Low

Pin Description

Pin Name	Pin#	Inputs/ Outputs	Description
D _{IN}	2	I	TTL Driver Input
DO± RI±	6, 7	I/O	LVDS Driver Outputs/ LVDS Receiver Inputs
R _{OUT}	3	О	TTL Receiver Outputs
RE	5	I	Receiver Enable TTL Input (Active Low)
DE	1	I	Driver Enable TTL Input (Active High)
GND	4	NA Ground	
V_{CC}	8	NA	Power Supply

4/20/11

DISTCONTINUED - PLEASE USE PI90LV01

PI90LVB010 Single Bus LVDS Transceiver

DC Electrical Characteristics $^{(2,3)}$ $(T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C}, \text{ unless otherwise noted. } V_{CC} = 3.3V \pm 0.3V)$

Symbol	Parameter	Test Condition		Pin	Min.	Тур.	Max.	Units
V_{OD}	Output Differential Voltage	D 270 G G 1			140 250 36	360		
ΔV_{OD}	V _{OD} Magnitude Change					3	30	mV
Vos	Offset Voltage	$R_L = 27\Omega$, See figure	1	DO+/RI+ DO-/RI-	1	1.25	1.65	V
ΔV_{OS}	Offset Magnitude Change			DO-/KI-		5	50	mV
I _{OSD}	Output Short Circuit Current	$V_O = 0V$, DE = V_{CC}]		-12	-20	mA
		$V_{ID} = +100 \text{mV}$			2.8	3		
		Inputs Open			2.8	3		
V_{OH}	Voltage Output High	Inputs Shorted	$I_{OH} = -400$	R _{OUT}	2.8	3		V
		Inputs Terminated, $R_L = 27\Omega$			2.8	3		V
V _{OL}	Voltage Output Low	$I_{OL} = 2.0 \text{mA}, V_{ID} = -3$	100mV			0.1	0.4	
I _{OS}	Output Short Circuit Curretn	$V_{OUT} = 0V, V_{ID} = 100$)V		-5	-35	-85	mA
V_{TH}	Input Threshold High	DE = 0V					100	
V_{TL}	Input Threshold Low			DO+/RI+	-100			mV
т	Leave Comment	$DE = 0V, V_{IN} = 2.4V \text{ or } 0V$		DO-/RI20	±1	20		
I_{IN}	Input Current	$V_{CC} = 0V, V_{IN} = 2.4V$	$V_{CC} = 0V$, $V_{IN} = 2.4V$ or $0V$		-20	±1	20	μA
V _{IH}	Minimum Input High Voltage			IN, DE, RE	2.0		V _{CC}	V
$V_{\rm IL}$	Minimum Input Low Voltage				GND		0.8	V
$I_{ m IH}$	Input High Current	$V_{IN} = V_{CC}$ or 2.4V				±1	10	
$I_{ m IL}$	Input Low Current	$V_{IN} = GND \text{ or } 0.4V$				±1	10	μA
V_{CL}	Input Diode Clamp Voltage	$I_{CLAMP} = -18mA$			-1.5	-0.8		V
I _{CCD}		$DE = \overline{RE} = V_{CC}, R_L =$	= 27Ω	V _{CC}		13	20	
I _{CCR}	Daniel Commit	$DE = \overline{RE} = 0V$				5	8	4
I _{CCZ}	Power Supply Current	$DE = 0V, \overline{RE} = V_{CC}$				3	7.5	mA
I _{CC}]	$DE = V_{CC}$, $\overline{RE} - 0V$, $R_L = 27\Omega$				16	22	
Соитрит	Bus Pin Capacitance	, 2		DO+/RI+ DO-/RI-		5		pF

Notes:

- 1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.
- 2. All currents into device pins are positive, all currents out of device pins are negative. All voltages are referenced to ground except: V_{OD}, V_{ID}, V_{TH}, and V_{TL}, unless otherwise specified.
- 3. All typicals are given for $V_{CC} = +3.3V$ or 5.0V and $T_A = +25$ °C unless otherwise stated.
- 4. ESD Rating: HBM $(15k\Omega, 100pF) > 2.0kV$ EAT $(0\Omega, 200pF) > 300V$.
- 5. C_L includes probe and jig capacitance.
- 6. Generator waveforms for all tests unless otherwise specified: f = 1 MHz, $ZO = 50 \Omega$, t_r , $t_f \le 6.0 ns$ (0% 100%) on control pins and $\le 1.0 ns$ for R_I inputs.
- The PI90LVB010 is a current mode device and only functions with datasheet specification when a resistive load is appplied between the driver outputs.
- 8. For receiver disable delays, the switch is set to V_{CC} for t_{PZL} , and t_{PLZ} and to GND for t_{PZH} and t_{PHZ} .

3 4/20/11

AC Electrical Characteristics $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, V_{CC} = 3.3\text{V} \pm 0.3\text{V})$

Symbol	Paramter	Test Conditions	Min.	Тур.	Max.	Units
Differential D	river Timing Requirement					
t _{PHLD}	Differenital Propagation Delay High to Low		0.7	1.5	2.7	
t _{PLHD}	Differential Propagation Delay Low to High	$R_{\rm L} = 27\Omega$	0.7	1.5	2.7	
t _{SKD}	Differential Skew t _{PHLD} - t _{PLHD}	Figures 2 & 3		0.2	1.0	
t _{TLH}	Transition Time Low to High	$C_L = 10pF$		0.3	0.9	
t_{THL}	Transition Time High to Low			0.3	0.9	ns
t_{PHZ}	Disable Time High to Z		0.5	2.6	3.3	
t_{PLZ}	Disable Time Low to Z	$R_L = 27\Omega$ Figures 4 & 5	0.5	2.6	3.3	
t _{PZH}	Enable Time Z to High	$C_{L} = 10 pF$	0.5	2.6	3.3	
t_{PZL}	Enable Time Z to Low		0.5	2.6	3.3	
Differential R	eceicer Timing Requirements	_	_			
t _{PHLD}	Differential Propagation Delay High to Low		1.3	2.1	3.2]
t _{PLHD}	Differenital Propagation Delay Low to High		1.3	2.1	3.2	
t_{SKD}	Differential Skew t _{PHLD} - t _{PLHD}	Figures 6 & 7 $C_{L} = 10 \text{pF}$		0.5	2.0	
t_{R}	Rise Time			0.8	1.4	
t_{F}	Fall Time			1.8	1.4	ns
t _{PHZ}	Disable Time High to Z Disable Time Low to Z $R_L = 500\Omega$		1.5	4.0	6.0]
t _{PLZ}			5.0	4.0	7.0	1
t _{PZH}	Enable Time Z to High	Figures 8 & 9 $C_L = 10 pF^{(8)}$	0.5	2.5	7.0	
t _{PZL}	Enable Time Z to Low	_	0.5	2.5	6.0]

4

Test Circuits and Timing Waveforms

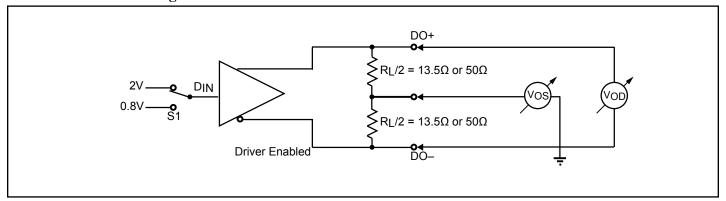


Figure 1. Differential Driver DC Test Circuit

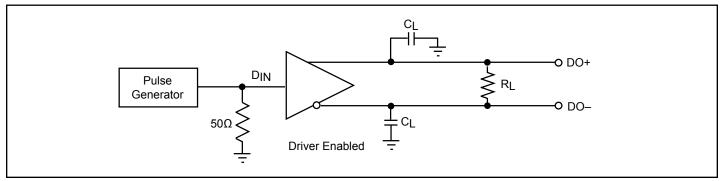


Figure 2. Differential Driver Propagation Delay and Transition Time Test Circuit

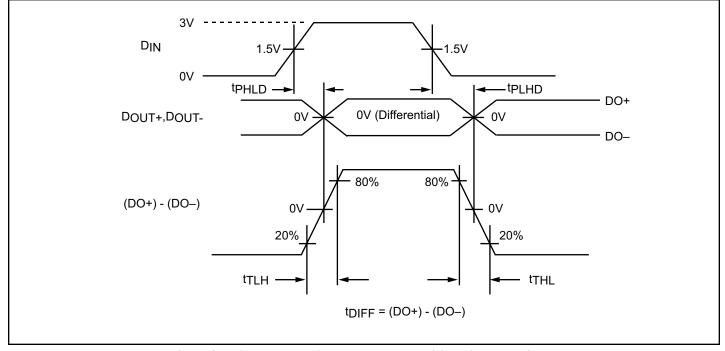


Figure 3. Driver Propagation Delay and Transition Time Waveforms 5

4/20/11

Test Circuits and Timing Waveforms (continued)

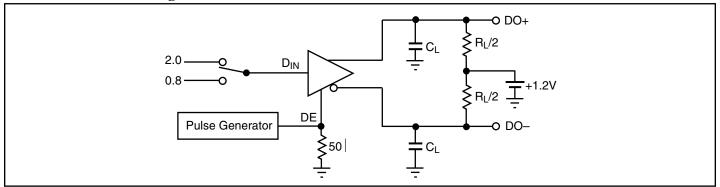


Figure 4. Driver Three-State Delay Test Circuit

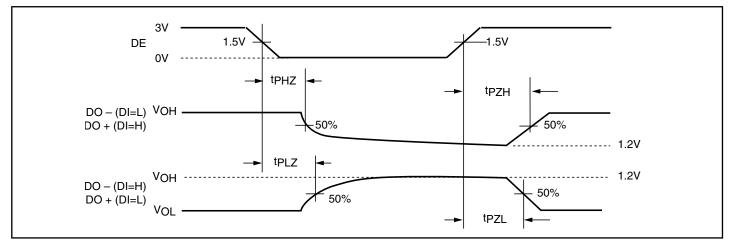


Figure 5. Driver Three-State Delay Waveforms

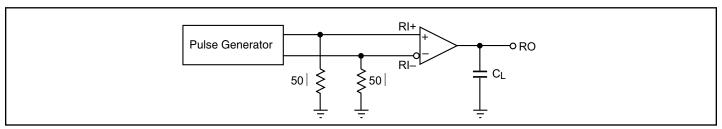


Figure 6. Receiver Propagation Delay and Transistion Time Test Circuit

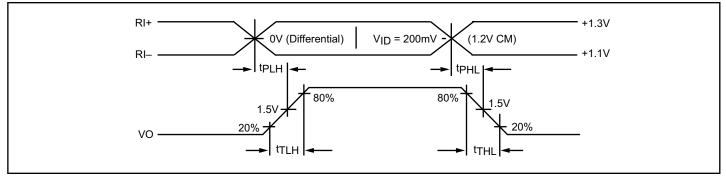


Figure 7. Receiver Propagation Delay and Transistion Time Waveforms

6 4/20/11

Test Circuits and Timing Waveforms (continued)

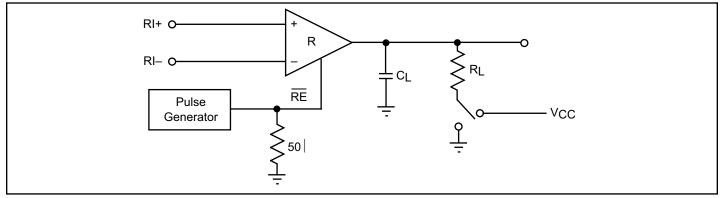


Figure 8. Receiver Three-State Delay Test Circuit

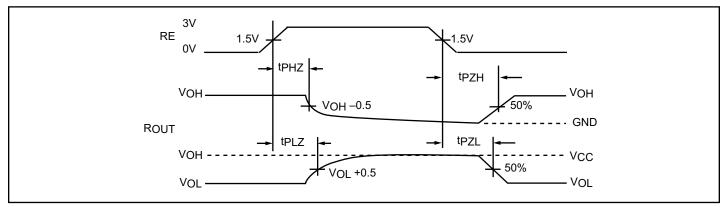


Figure 9. Receiver Three-State Delay Waveforms

Typical Bus Application Configurations

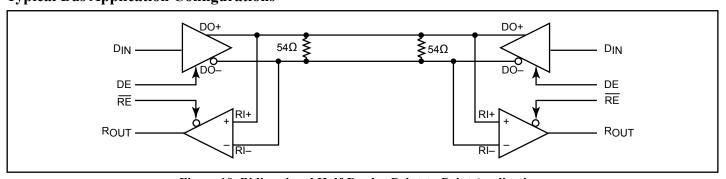


Figure 10. Bidirectional Half-Duplex Point-to-Point Applications

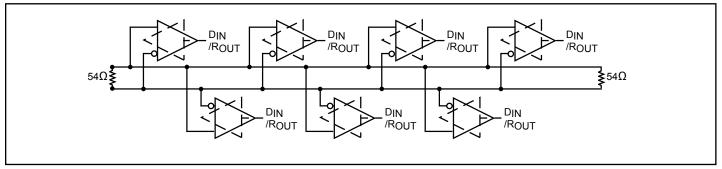
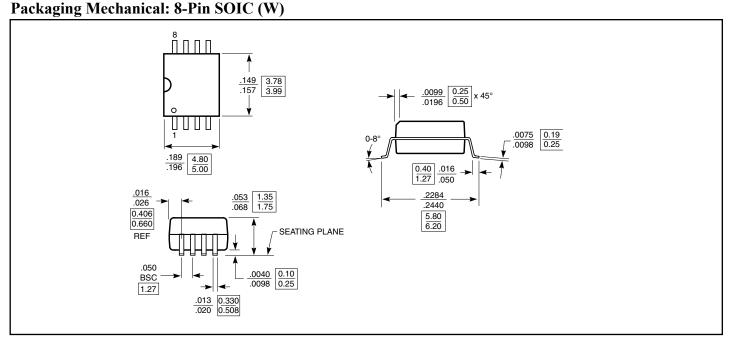
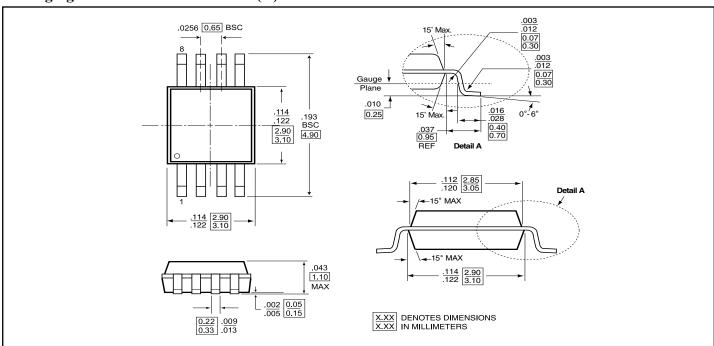




Figure 11. Multipoint Bus Applications

Dacks sing Machanicals & Din COIC (W)

Packaging Mechanical: 8-Pin MSOP (U)

8 4/20/11

DISTCONTINUED - PLEASE USE PI90LV01

PI90LVB010 Single Bus LVDS Transceiver

Ordering Information

Ordering Code	Package Code	Package Description
PI90LVB010WE	W	Pb-free & Green, 8-pin, SOIC
PI90LVB010UE	U	Pb-free & Green, 8-pin MSOP

Notes:

Thermal characteristics can be found on the company web site at www.pericom.com/packaging/