

NOT RECOMMENDED FOR NEW DESIGN -NO ALTERNATE PART

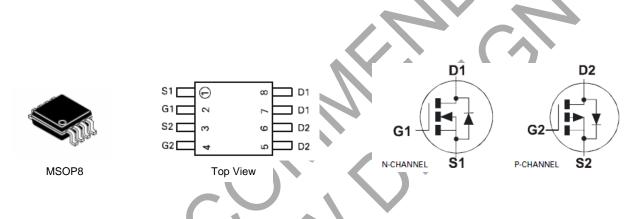
ZXMD63C02X

20V DUAL N AND P-CHANNEL ENHANCEMENT MODE MOSFET

Product Summary

Device	V _{(BR)DSS}	R _{DS(ON)}	I _D
N-Channel	20V	0.13Ω	2.4A
P-Channel	-20V	0.27Ω	-1.7A

Description


This new generation of high density MOSFETs from Diodes Incorporated utilises a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

Features

- Low On-resistance
- Fast Switching Speed
- Low Threshold
- Low Gate Drive
- Low Profile SOIC Package

Applications

- DC DC Converters
- Power Management Functions
- Disconnect Switches
- Motor Control

Ordering Information

Part Number	Device Marking	Reel Size (inches)	Tape Width (mm)	Quantity Per Reel
ZXMD63C02XTA	ZXM63C02	7	12mm Embossed	1000 Units
ZXMD63C02XTC	ZXM63C02	13	12mm Embossed	4000 Units

Maximum Ratings

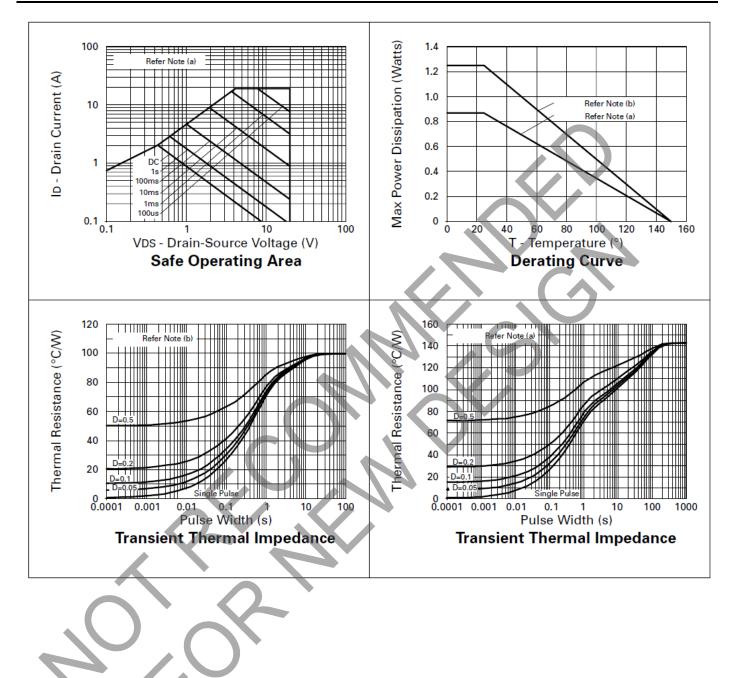
PARAMETER	SYMBOL	N-CHANNEL	P-CHANNEL	UNIT	
Drain-Source Voltage	V _{DSS}	20	-20	V	
Gate- Source Voltage	V _{GS}	±	± 12		
Continuous Drain Current (V_{GS} =4.5V; T_A =25°C)(b)(d) (V_{GS} =4.5V; T_A =70°C)(b)(d)	ID	2.4 1.9	-1.7 -1.35	А	
Pulsed Drain Current (c)(d)	I _{DM}	19	-9.6	А	
Continuous Source Current (Body Diode)(b)(d)	I _S	1.5	-1.4	А	
Pulsed Source Current (Body Diode)(c)(d)	I _{SM}	19	-9.6	А	
Power Dissipation at T _A =25°C (a)(d) Linear Derating Factor	P _D		87 .9	W mW/°C	
Power Dissipation at T _A =25°C (a)(e) Linear Derating Factor	P _D		04 .3	W mW/°C	
Power Dissipation at T _A =25°C (b)(d) Linear Derating Factor	P _D		25 0	₩ mW/°C	
Operating and Storage Temperature Range	T _i :T _{stg}	-55 to	+150	°C	

Thermal Characteristics

۵				
PARAMETER		SYMBOL	VALUÉ	UNIT
Junction to Ambient (a)(d)		R _{0JA}	143	°C/W
Junction to Ambient (b)(d)		R _{eja}	100	°C/W
Junction to Ambient (a)(e)	CN	R _{eja}	120	°C/W
-				•

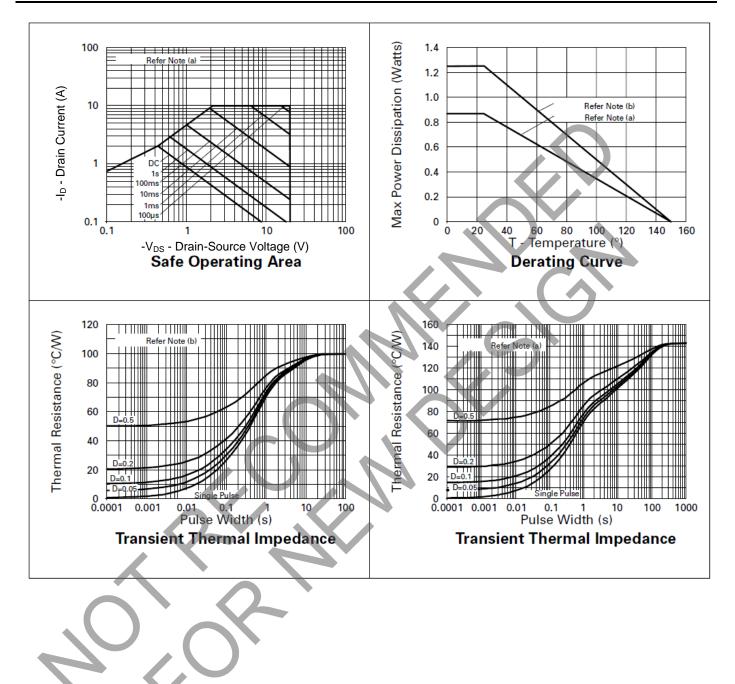
NOTES

(a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions


(c) Repetitive rating - pulse width limited by maximum junction temperature. Refer to Transient Thermal Impedance graph.

(d) For device with one active die.

(e) For device with two active die running at equal power.

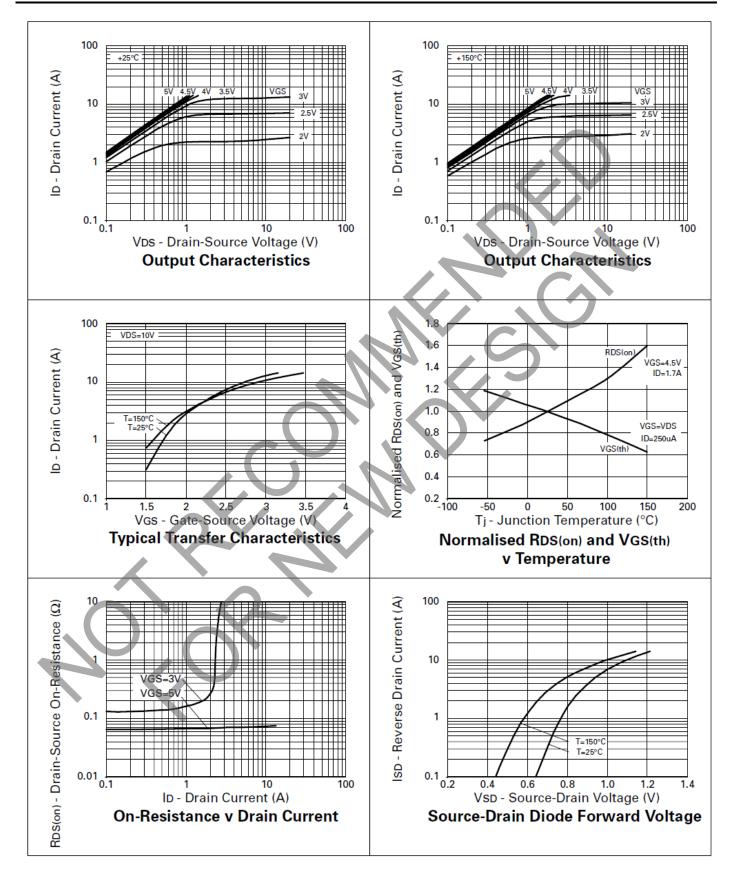


N-Channel Characteristics

P-Channel Characteristics

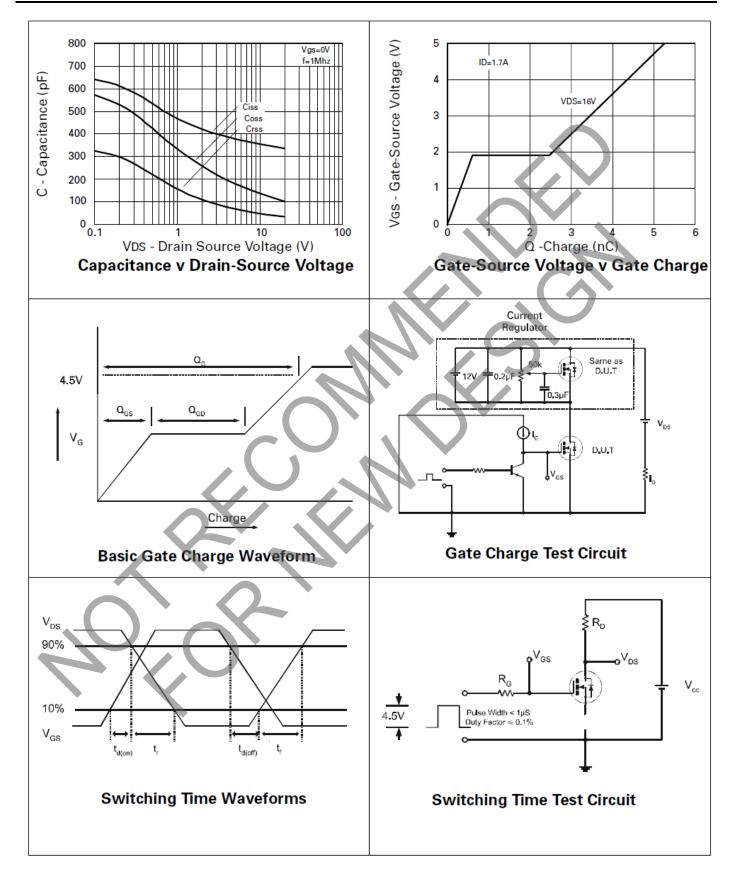
Electrical Characteristics – N-Channel (@T_A = +25°C, unless otherwise specified.)

SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.		
				_			
V _{(BR)DSS}	20			V	$I_D=250\mu A, V_{GS}=0V$		
I _{DSS}			1	μA	V _{DS} =20V, V _{GS} =0V		
I _{GSS}			100	nA	$V_{GS}=\pm 12V, V_{DS}=0V$		
V _{GS(th)}	0.7			V	$I_D=250\mu A, V_{DS}=V_{GS}$		
R _{DS(on)}			0.130 0.150	Ω Ω	V _{GS} =4.5V, I _D =1.7A V _{GS} =2.7V, I _D =0.85A		
g _{fs}	2.6			s	V _{DS} =10V,I _D =0.85A		
DYNAMIC (3)							
C _{iss}		350		ρF			
C _{oss}		120		pF	V _{DS} =15 V, V _{GS} =0V, f=1MHz		
C _{rss}	1	50		рF			
t _{d(on)}		3.4		ns			
t _r		8.1		ns	V _{DD} =10V, I _D =1.7A		
t _{d(off)}		13.5		ns	$R_{G}=6.0\Omega, R_{D}=5.7\Omega$ (Refer to test		
t _f		9.1		ns	circuit)		
Qg			6	nC			
Q _{gs}			0.65	nC	V _{DS} =16V,V _{GS} =4.5V, I _D =1.7A (Refer to test circuit)		
Q _{gd}			2.5	nC			
V _{SD}			0.95	V	T _j =25°C, I _S =1.7A, V _{GS} =0V		
t _{rr}		15.0		ns	T _j =25°C, I _F =1.7A, di/dt= 100A/μs		
r	i	1	1	1	$du/dt = 100\Delta/us$		
	V _{(BR)DSS} I _{DSS} I _{GSS} V _{GS(th)} R _{DS(on)} gfs C _{iss} C _{oss} C _{rss} t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _{gd}	IDROSSIDRSIDRSIGSSIGSSVGS(th)0.7RDS(on)gfs2.6CissCossCossCrssCrssCrsstd(on)trd(off)trQgQgQgQgdVSD	V(BR)DSS 20 IDSS I IGSS I IGSS I VGS(th) 0.7 RDS(on) I gfs 2.6 Coss I Coss I Crss I Id(on) I Id(onf) I Id(off) I Id(off) <td< td=""><td>V(BR)DSS 20 I IDSS I 1 IGSS I 100 VGS(th) 0.7 I I RDS(on) I 0.130 0.150 gfs 2.6 I I Ciss I I I Coss I I I Crss I I I td(on) I I I tq(onf) I I I tq(off) I I I Qg I I I I</td><td>V(BR)DSS 20 I V IDSS I I μA IGSS I IOO nA VGS(th) 0.7 IOO V RDS(on) 0.7 IOO O gfs 2.6 IOO Q Grss IOO S S Ciss IOO S PF Coss IOO PF PF Crss IOO A PF td(on) IO IOO PF td(off) IO IOO IS tq(off) IO IOO IS Qg IO IOO IOO Qg IO IOO IOO <</td></td<>	V(BR)DSS 20 I IDSS I 1 IGSS I 100 VGS(th) 0.7 I I RDS(on) I 0.130 0.150 gfs 2.6 I I Ciss I I I Coss I I I Crss I I I td(on) I I I tq(onf) I I I tq(off) I I I Qg I I I I	V(BR)DSS 20 I V IDSS I I μA IGSS I IOO nA VGS(th) 0.7 IOO V RDS(on) 0.7 IOO O gfs 2.6 IOO Q Grss IOO S S Ciss IOO S PF Coss IOO PF PF Crss IOO A PF td(on) IO IOO PF td(off) IO IOO IS tq(off) IO IOO IS Qg IO IOO IOO Qg IO IOO IOO <		


(1) Measured under pulsed conditions. Width=300 μ s. Duty cycle \leq 2%.

(2) Switching characteristics are independent of operating junction temperature.

(3) For design aid only, not subject to production testing.

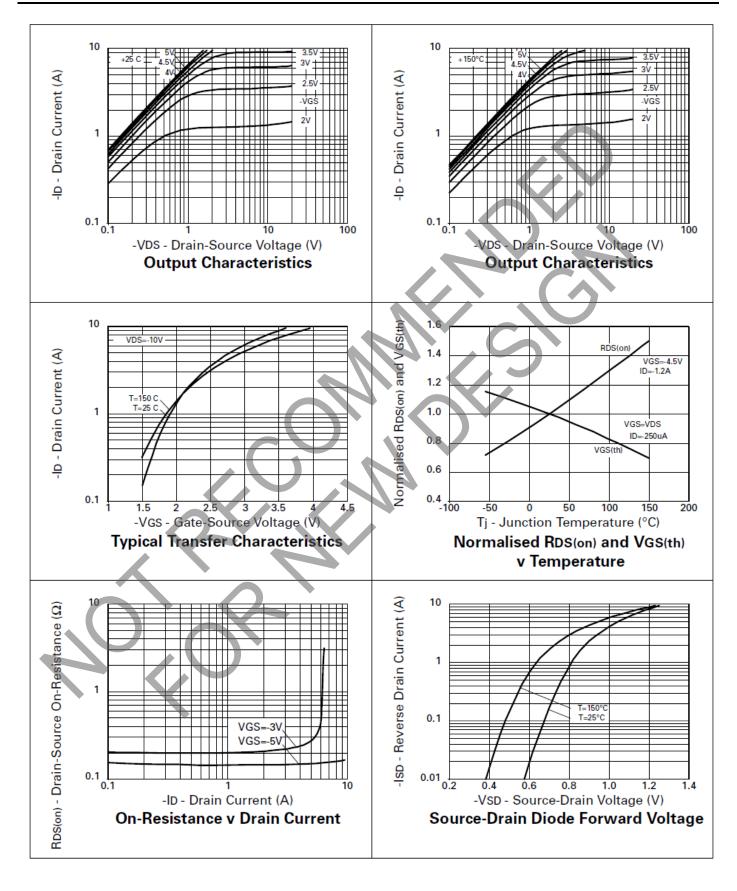


N-Channel Typical Characteristics

N-Channel Characteristics

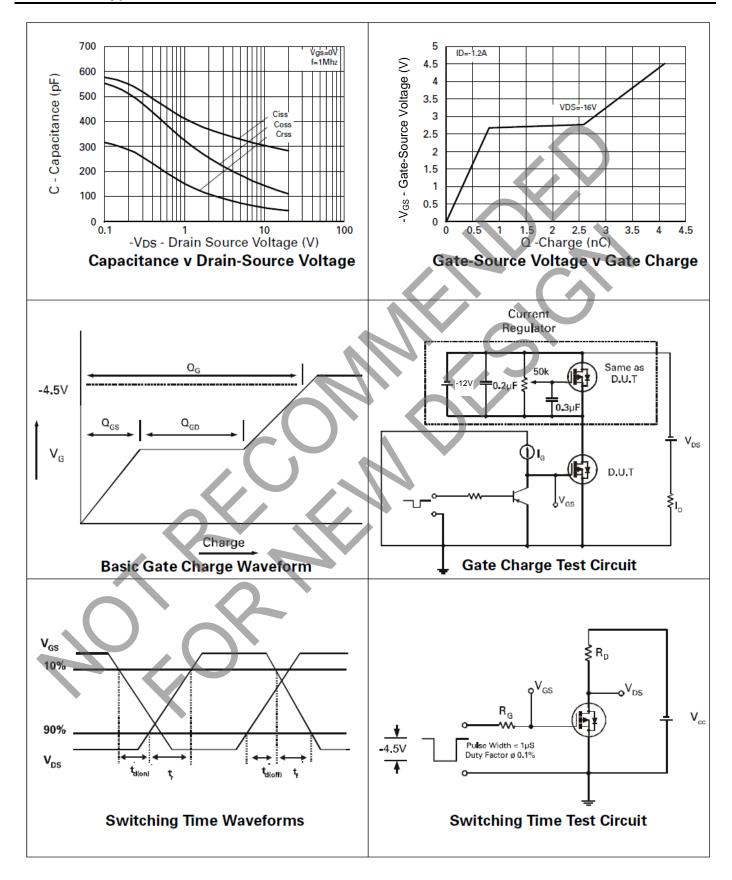
Electrical Characteristics – P-Channel (@T_A = +25°C, unless otherwise specified.)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.	
STATIC							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	-20			V	I_D =-250 μ A, V_{GS} =0V	
Zero Gate Voltage Drain Current	I _{DSS}			-1	μA	V _{DS} =-20V, V _{GS} =0V	
Gate-Body Leakage	I _{GSS}			±100	nA	$V_{GS}=\pm 12V, V_{DS}=0V$	
Gate-Source Threshold Voltage	V _{GS(th)}	-0.7			V	I _D =-250μΑ, V _{DS} = V _{GS}	
Static Drain-Source On-State Resistance (1)	e R _{DS(on)}			0.27 0.40	Ω Ω	V _{GS} =-4.5V, I _D =-1.2A V _{GS} =-2.7V, I _D =-0.6A	
Forward Transconductance (3)	g _{fs}	1.3			S	V _{DS} =-10V,I _D =-0.6A	
DYNAMIC (3)					$\mathbf{\nabla}$		
Input Capacitance	C _{iss}		290		pF		
Output Capacitance	C _{oss}		120		pF	V _{DS} =-15 V, V _{GS} =0V, f=1MHz	
Reverse Transfer Capacitance	C _{rss}		50		pF		
SWITCHING(2) (3)	•						
Turn-On Delay Time	t _{d(on)}		3.4		ns		
Rise Time	tr		9.6		ns	V _{DD} =-10V, I _D =-1.2A	
Turn-Off Delay Time	t _{d(off)}		16.4		ns	$R_{G}=6.0\Omega, R_{D}=8.3\Omega$ (Refer to test	
Fall Time	t _f		20.4		ns	circuit)	
Total Gate Charge	Qg			5.25	nC		
Gate-Source Charge	Q _{gs}			1.0	nC	V _{DS} =-16V,V _{GS} =-4.5V I _D =-1.2A (Refer to test circuit)	
Gate Drain Charge	Q _{gd}			2.25	nC		
SOURCE-DRAIN DIODE			I.				
Diode Forward Voltage (1)	V _{SD}			-0.95	V	$T_j=25^{\circ}C$, $I_S=-1.2A$, $V_{GS}=0V$	
Reverse Recovery Time (3)	t _{rr} 21.7		21.7		ns	$T_{i}=25^{\circ}C, I_{F}=-1.2A,$	
Reverse Recovery Charge(3)	Q _{rr}		9.6		nC	di/dt= 100A/μs	

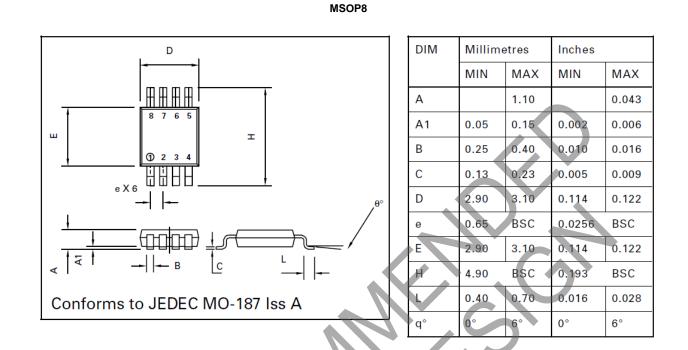

(1) Measured under pulsed conditions. Width=300 μ s. Duty cycle $\leq 2\%$.

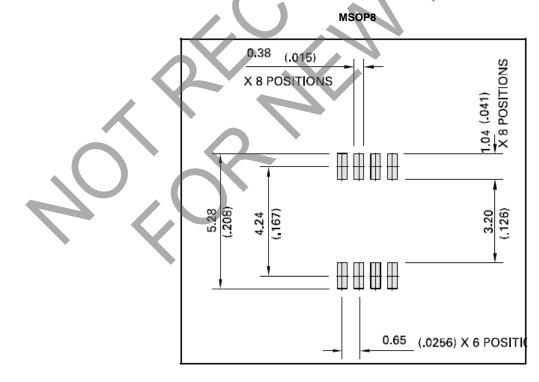
(2) Switching characteristics are independent of operating junction temperature.

(3) For design aid only, not subject to production testing.



P-Channel Characteristics


P-Channel Typical Characteristics (Cont.)


Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

ZXMD63C02X Document number: DS41133 Rev. 1 - 3

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com